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Abstract 

Traditional regression analysis is a method of statistical data analysis based on probability theory. Regression 

models play crucial roles in various branches of statistics including design of experiments, econometrics etc. In 

regression models, the dependent variable is assumed to be of stochastic nature where randomness enters via 

errors. Further, the independent variables are assumed to be of deterministic nature. The regression coefficients 

which explain the interdependency between the variables are assumed to be crisp quantities. Whenever, difficulty 

arises in expressing the values taken by the dependent variable in terms of crisp quantities, traditional regression 

models become irrelevant. This paper provides a framework for dealing with such situations on using the notion 

of uncertain sets of various forms. In this paper, a solution for this problem obtained via linear programming 

technique is introduced along with an illustrative example. 

Keywords: uncertainty theory, uncertain set, parametric estimation, regression analysis 

1. Introduction 

Regression analysis is one of the major branches of statistical theory. Regression analysis aims at analyzing the 

extent of interdependency between variables by making use of the observed data. Further, models developed by 

using the experimental data are used for several tasks including forecasting and decision making. 

In a regression model, some are called independent variables and others are named the dependent variables. The 

dependent variables change along with the changes of the independent variables. In the traditional regression 

model, the dependent variable is regarded as random variable because of the random disturbance term. 

Researchers have made significant contributions on the theoretical aspects as well as the applications of tools 

available in linear models in various fields. Regression analysis assumes the experimental data as well as the 

predicted values of the dependent variables are of crisp nature. And in the application of the model, it is needful 

to meet the following two conditions. On one hand, each independent repeated experiment is conducted under 

the same conditions; on the other hand, the experimental number is large enough. However, in many practical 

problems, the above conditions cannot be met and there also exists nondeterminacy in many systems which leads 

to the result that it contains language data in input or output. So under these circumstances, people began to pay 

attention to uncertain data such as fuzzy data to describe these phenomena. 

The development of fuzzy set theory (Zadeh, 1965) created alternative directions for developing models which 

are similar to regression models using imprecise or vague data. In literature such models are referred to as fuzzy 

regression models. The notion of fuzzy regression analysis was initiated by Tanaka et al. (1982) and the linear 

model of fuzzy regression analysis was established. A fuzzy functional relationship was given between 

independent variables and dependent variables in fuzzy regression model. The input data and unknown 

coefficients may be crisp or fuzzy and the predicted values of dependent variables will be of fuzzy nature. 

Research in the direction of developing fuzzy linear regression models has received the attention of several 

researchers during the past three decades. Once the functional relationship is determined, the main work is to 

estimate the parameters. For different types of fuzzy numbers, Diamond (1988, 1997, 1987) and Korner (1998) 

used the least square approach in estimating the parameters involved in the model. And Su, Wang and Wang 

(2013) investigated parametric regression analyses which includes both linear and nonlinear of imprecise data by 

using the fuzzy evidential EM algorithm. Based on the possibilistic approach, verny et al. (2013) studied the 
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linear regression models for uncertain, indeterminate or interval data taking in to account the loss of information. 

Based on fuzzy neural networks, Ishibuchi et al. (2001) analyzed the fuzzy regression model by bringing in 

asymmetric fuzzy coefficients. Muller et al. (2014) introduced an algorithm for identification and estimation of 

relevant parameters in an optimized manner. Danesh et al. (2016) introduced the adaptive neuro-fuzzy inference 

system (ANFIS) which is used for fuzzy nonparametric regression function prediction where input and output 

are crisp and fuzzy respectively. Chen et al. (2016) have developed an approach to optimize the value of 

membership degree h of fuzzy linear regression whose coefficients are asymmetric triangular fuzzy data. In 

addition, Sclove (2014) improved the method of estimating the coefficients in an orthogonal linear regression 

model by point estimation which is more efficient than the ordinary. 

Linear regression models are applicable only when distributional assumptions made in their construction via 

probability theory. They become irrelevant when randomness is replaced by impreciseness in the system being 

studied. Researchers working on fuzzy sets have developed alternative approaches to handle such situations. 

However, lack of laws of excluded middle and contradiction creates suspicion among practitioners in accepting 

the conclusions drawn from such fuzzy models. To overcome this problem, Liu (2007) initiated a new branch of 

study, namely, uncertainty theory in 2007 and made refinements on the same in 2010. 

Uncertainty theory is established analogous to measure theory and now it has developed into a branch of 

axiomatic mathematics. Liu (2010) introduced uncertain statistics which is a methodology employed to collect 

and interpret experts’ experimental data via uncertainty theory when no samples are obtainable. The problem of 

estimating parameters in uncertainty distributions with known functional form is one of the several research 

problems tackled in uncertain statistics. Towards addressing this problem, Liu (2007) introduced the concept of 

uncertainty distribution. Wang et al. (2012) considered Delphi method for estimating uncertainty distribution 

based on multiple domain experts data. A method based on the principle of least squares was suggested by Liu 

(2007) for estimating the parameters of uncertainty distribution. Later, a new method namely method of 

moments was suggested by Wang and Peng (2014). Besides, a statistical method called uncertain hypothesis 

testing was suggested by Wang et al. (2012) in order to test whether two uncertainty distributions are equal. 

To describe the relationship between variables involved in uncertainty phenomena, Liu (2007) proposed an 

uncertain regression model based on uncertain variable. In the proposed model, uncertainty comes from the error 

component which is treated as an uncertain variable. It was assumed that the model receives as input crisp data 

and the output will be in terms of uncertain variables. Furthermore, an uncertain linear regression model was 

studied by Guo et al. (2017) and it was applied to predict China’s GDP. Apart from these, for situations in which 

the data gathered from experts’ knowledge is of imprecise form, Guo et al. (2011) came out with an uncertain 

regression model with an intrinsic error structure driven by uncertain canonical process. In the above-mentioned 

uncertain regression model, the observed values of variables are real numbers. However, in fact, the observations 

are with the characteristic of multiple memberships and maybe the sample size is small. Therefore, we can turn 

our attention to uncertain set which can be applied to describe uncertainty phenomenon. It is pertinent to note the 

difference between fuzzy and uncertain sets. While fuzzy sets use the concept of possibility measures, uncertain 

sets use the uncertain measure. It is to be highlighted that uncertain sets give room for accommodating several 

properties which include independence of uncertain sets as well. Research contributions related to uncertain sets 

are reviewed in the forthcoming section. 

The main objective of the paper is to introduce a regression model based on uncertain sets. Apart from this the 

present work considers and evaluates methods of estimation of parameters in the proposed model. Uncertain 

linear regression model based on symmetrical triangular, symmetrical trapezoidal and normal uncertain set are 

considered respectively. A procedure based on linear programming has been suggested for estimating the 

parameters in the uncertain linear models and appropriate performance evaluation criteria are also considered. 

Section organization of the paper is as follows. The second section of this paper gives a brief introduction to 

uncertain theory as well as uncertain statistics. Uncertain linear regression model using uncertain sets and the 

problem of estimating parameters involved in it are considered in the third section. An illustrative example is 

given in the fourth section and conclusions drawn from this study are given in the fifth section. 

2. Preliminaries 

In this section, we will introduce some fundamental definitions and theorems in uncertainty theory and uncertain 

statistics. 

2.1 Uncertainty Theory 

Definition 1. (Liu, 2007) Let 𝛤 be a nonempty set, and L be a   algebra over 𝛤. Each element L is called 
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an event. A number { }M  denotes the level that  will occur. Then M is called an uncertain measure if it satisfies 

the following axioms: 

Axiom 1: (Normality Axiom) { } 1M   . 

Axiom 2: (Duality Axiom) { } { } 1cM M     for any event  . 

Axiom 3: (Subadditivity Axiom) For every countable sequence of events {
i

 }, we have

   1 1
.i i ii

M M


 
    

Note that the triplet ( , , )L M is called an uncertainty space. 

Besides, the product uncertain measure on the product   algebra L was defined by Liu (2009) as follows. 

Axiom 4: (Product Axiom) Let ( , , )k k kL M be uncertainty spaces for k = 1, 2,⋯. The product uncertain measure M 

is an uncertain measure satisfying
1 1

{ } { }k k kk k
M M




 
    , where 𝛬𝑘 are arbitrarily chosen events from 𝐿𝑘. 

The concept of uncertain variable ξ was introduced by Liu as a measurable function from an uncertainty space 

( , , )L M to the set of real numbers. In order to describe an uncertain variable, uncertainty distribution was 

defined. 

Definition 2. (Liu, 2007) An uncertain variable is a measure function ξ  from an uncertain space ( , , )L M  to the 

set of real number. That is, for any Borel set B, the set
{ } { | ( ) }B L B      

is an event. 

Definition 3. (Liu, 2007) The uncertainty distribution   of an uncertain variable ξ is ( ) { },x M x x R       

Definition 4. (Liu, 2010)  Let  ξ be an uncertain variable with a regular uncertainty distribution      . 

Then  -     is called the inverse uncertainty distribution of  ξ   

2.2 Uncertain Set 

In order to model the concepts whose boundaries are not sharp because of the ambiguous human language, 

uncertain set was proposed by Liu in 2010. 

Definition 5. (Liu, 2010) An uncertain set is a function ξ  from an uncertain space  Γ, L, M to a collection of sets 

of real numbers such that both {B ⊂ ξ } and { ξ⊂ B} are events for any Borel set B of real numbers. 

Definition 6. (Liu, 2012) An uncertain set ξ  is said to have a membership function    if for any Borel set B of 

real numbers, we have  { ⊂ ξ}      
   
   

 and  {ξ ⊂  }      
    
     

Definition 7. (Liu, 2007) Let ξ1,  ξ2, ⋯  ξ  be uncertain sets on the uncertainty space  Γ, L, M , and let f be a 

measurable function. Then  ξ  f ξ
1
,  ξ2, ⋯  ξ   is an uncertain set defined by ξ 𝛾  f ξ

1
 𝛾 ,  ξ2 𝛾 ,⋯  ξ  𝛾   

for any  γ∈Γ. 

Definition 8. (Liu, 2007) An uncertain set ξ is called triangular if it has a membership function 

,
( )

,

x a b a if a x b
x

x c b c if b x c


   
 

   
 

denoted by (a, b, c) where a, b, c are real numbers with a<b<c. 

ξ is called symmetrical triangular uncertain set if and only if c − b = b − a. Then c − b or b − a is named radius 

of ξ and b is the center of  ξ. 
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Definition 9. (Liu, 2007) An uncertain set  ξ is called trapezoidal if it has a membership function 

,

( ) 1,

,

x a b a if a x b

x if b x c

x d c d if c x d



   


  
    

 

denoted by (a, b, c,d) where a, b, c, d are real numbers with a < b < c < d. 

ξ is symmetrical trapezoidal uncertain set if and only if d − c = b − a. Then d − c or b − a is named radius of ξ. 

Definition 10. (Guo, 2014) An uncertain set ξ is called normal if it has a membership function 

2

2

( )
( ) exp( )

2

x a
x

b



   

denoted by N(a, b) where a and b are real numbers with b > 0. Especially, a normal uncertain set N(a, b) is 

called standard if the parameters a = 0 and b = 1; denoted by N(0, 1). The parameter a is called the center of  ξ. 

Definition 11. (Liu, 2013) The uncertain sets  ξ1,  ξ2, ⋯  ξ  are said to be independent if for any Borel sets 

B1,B2,⋯,Bn of real numbers, we have 

 * *

1
1

( )
n n

i i i i
i

i

M B M B 




 
    

 
 

 {⋂ (ξ 
∗ ⊂   )

 
 =1 }  ⋀  {ξ 

∗ ⊂   }
 
 =1 ,  {⋃ (ξ 

∗ ⊂   )
 
 =1 }  ⋁  {ξ 

∗ ⊂   }
 
 =1  

where ξ 
∗ are arbitrarily chosen from  {ξ , ξ 

𝑐}, i   , 2, ⋯, n, respectively. 

Definition 12. (Liu, 2012) Let ξ be an uncertain set with membership function   . Then the set-valued function 

 -    ={ ∈R|    ≥ }, ∀ ∈[0, ] 

is called the inverse membership function of  ξ   For each given 𝛼, the set  𝜇−1 𝛼  is also called the  α − cut of 

𝜇  

Example 1. The triangular uncertain set ξ   𝑎, 𝑏, 𝑐  has an inverse membership function  

 μ−1 𝛼  [ 1 − 𝛼 + 𝛼𝑏, 𝛼𝑏 +  1 − 𝛼 𝑐]. 

Example 2. The trapezoidal uncertain set ξ   𝑎, 𝑏, 𝑐, 𝑑  has an inverse membership function 

 μ−1 α  [ 1 − α + αb, αc +  1 − α d]. 

Example 3. The inverse membership functions of normal uncertain set N(a, b) and the standard normal 

uncertain set N(0, 1) are   𝜇−1 𝛼  [𝑎 − 𝑏√−2𝑙𝑛𝛼, 𝑎 + 𝑏√−2𝑙𝑛𝛼 ]  and   𝜇−1 𝛼  [−√−2𝑙𝑛𝛼, √−2𝑙𝑛𝛼 , 

repectively. 

Theorem 1. ([16]) Let   ξ1,  ξ2, ⋯  ξ  be independent uncertain sets with inverse membership 

function  𝜇1
−1, 𝜇2

−1, ⋯ 𝜇 
−1 

and let f be a measurable function. Then  𝜉  𝑓 ξ
1
,  ξ2, ⋯  ξ  } has an inverse membership function  

𝜆−1 𝛼  𝑓 𝜇1
−1 𝛼 , 𝜇2

−1 𝛼 ,⋯𝜇 
−1 𝛼  . 

Theorem 2. (Liu, 2007) Let ξ be an uncertain set with inverse membership function   𝜇−1 𝛼  . Then the 

membership function of  ξ  is determined by 𝜇    𝑠𝑢𝑝{𝛼  [0,1]|  𝜇−1 𝛼 }  

With the aim of measuring the uncertainty treated as uncertain set, the entropy for uncertain set is introduced by 

Liu (2011). Similarly, Peng and Li (2013) defined the radical entropy for uncertain set and discussed several 

important properties. At the same time, the way to calculate the radical entropy was proposed. Lu and Wang 

(2013) defined the triangular entropy for uncertain set and discussed its properties. Meanwhile, the 

computational formula of the triangular entropy was studied. Wang and Ha (2013) defined the quadratic entropy 

for uncertain set and investigated the relationship between quadratic entropy and Liu’s entropy. Besides, 

quadratic cross entropy was also introduced to measure the difference between two uncertain sets. In addition, 
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Yao (2014) gave the definition of sine entropy and applied it to portfolio selection and clustering. The research of 

uncertain set has been utilized widely. 

Theorem 3. (Zhao, 2008) For a special kind of nonlinear programming problems (1) where the objective 

function contains absolute value symbol 

{

min∑ 𝑐   + ∑ |∑ 𝑑𝑘   
 
 =1 |𝐾

𝑘=1
 
 =1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
𝐴𝑋 ≤ 𝑏
𝑋 ≥ 0

                             (1) 

it can be transformed to the following linear programming problem, 

{
 
 

 
 
min∑ 𝑐   + ∑  𝑢𝑘 + 𝑣𝑘 

𝐾
𝑘=1

 
 =1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:
𝐴𝑋 ≤ 𝑏

∑ 𝑑𝑘 + 𝑢𝑘 − 𝑣𝑘  0 
 =1

𝑋 ≥ 0,   𝑈 ≥ 0,    𝑉 ≥ 0

                              (2) 

where 𝑈   𝑢1, 𝑢2, ⋯ , 𝑢𝐾 ,    𝑉   𝑣1, 𝑣2, ⋯ , 𝑣𝐾 . 

3. Uncertain Regression Model and Parameter Estimation 

3.1 Uncertain Regression Model 

In real life situations, practitioners come across wide variety of data sets. Tools available in statistics are 

effectively employed in decision making process as long as there is no impreciseness in data sets. However, 

statistical tools do not perform well when uncertainty enters the system. Hence, alternative approaches become 

necessary. Sensing this necessity, different tools parallel to those available in statistics are being developed under 

uncertainty theory. Liu proposed an uncertain regression model which is explained below. 

Let x be a vector of independent variables and y be a dependent variable. Assume the functional relationship 

between y and x can be expressed by the regression model  

y=f   |β                                         (3) 

where β is an unknown vector of parameters. If  f   |β   is a linear function, i.e. 

y  i =β0 0+β   i+⋯+β
p
 pi                                 (4) 

where p is the number of independent variables, then we obtain an uncertain linear regression model. In 

traditional linear regression model, we assume that the observed values of y are influenced by independent 

variables and random error. In other words, the dependent variable is a random variable with nondeterminacy. In 

uncertain linear regression model (4), the disturbance term and y are regarded as uncertain variables. This is the 

essential difference between uncertain regression model and traditional regression model. 

As a matter of fact, in many practical problems, the observed values can not be expressed as a crisp quantity but 

it may be possible to identity a wide range of possible values for y. For example, the experts often give a range 

when predict the price of a stock. In such cases, if we continue to use some crisp values for y, the conclusion 

drawn from the model may not reflect the actual behavior of the system. To handle such situations, we have to 

consider the uncertain regression model based uncertain set, namely, 

y=f   |β                                         (5) 

where  ∈R, β and y are uncertain sets. 

Models of the form stated in (5) can be used in the place of conventional statistical model when decision making 

process involves uncertainty. In this paper, we mainly focus our attention on the linear regression model, namely, 

y  i =β0+β   i+⋯+β
p
 pi , i= ,2,⋯,n, 

where x𝑗  𝑅, 𝛽𝑗 , j = 1; 2; · · ·, p and y(xi) are uncertain sets. 

3.2 Parameter Estimation 

Once the functional form of f is determined, next arises the problem of estimating the parameters β involved in 

the identified functional form. 

This section presents a solution to the estimation of parameters 𝛽0, 𝛽1, ⋯ , 𝛽  assumed as uncertain sets. The 

proposed method makes use of the observed values (xi, yi) and it is based on linear programming method. This 
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work considers three types of uncertain sets, namely, symmetrical triangular, symmetrical trapezoidal and normal 

uncertain sets. In order to estimate the parameters, we first introduce the concept of fitted value. 

Definition 13. Let (xi, yi), i=1,2, · · ·,n denote the i-th uncertain sample value, yi denote the i-th observed value 

with inverse membership function  
yi

-     and y(xi) denote the i-th uncertain dependent variable with inverse 

membership function i.e. 

1

( ) ( )( ) { | ( ) }
i iy x y xx x       

1( ) { | ( ) }.
i iy yx x       

where 0≤   ≤ . If  i is the maximum among   which meets the condition 1 1

( )( ) ( )
i iy y x      for each index i then  i 

is called the fitted value of the i-th sample. 

The subset notation 1 1

( )( ) ( )
i iy y x     means that the membership information of yi is contained in y(xi). Fitted 

value is an important index to describe the degree of congruence between the observed value yi and the 

theoretical value y(xi). We generally restrict that all the  i are greater than a specific value H (0≤ H ≤ ). H is 

fixed by taking into account the opinion of domain experts. That is , 1,2, , .i H i n   It can be guaranteed that the 

degree of congruence between yi and y(xi) is higher than level H for any i. Higher the value of  i, better will be 

the quality of the corresponding fit. 

3.2.1 Regression Model Based on Symmetrical Triangular Uncertain Set 

Let 𝛽0, 𝛽1, ⋯ , 𝛽  be independent symmetrical triangular uncertain sets, where ( , , ), 0,1, , .j j j ja b c j p   Let (xi, yi) 

be observed value, where xi is a vector made up of crisp numbers with  i≥ 0 and yi=(mi,pi,ni) is a symmetrical 

triangular uncertain set with an inverse membership function 1( ) [(1 ) , (1 ) ], 1,2, , .
iy i i i im p p n i n             

Assume that the relationship between xi and y(xi) can be expressed by the linear function 
 

0 1 1( ) , 1,2, , .i i p piy x x x i n        

It follows from Definition 7 that 

0 0 0

1 1 1

( ) ( , , ), 1,2, ,
p p p

i j ji j ji j ji

j j j

y x a a x b b x c c x i n
  

        

is a symmetrical triangular uncertain set. By Theorem 1, y(xi) has an inverse membership function as follows. 

1

( ) 0 0 0 0

1 1 1 1

( ) [(1 )( ] ( ), ( ) (1 )( ).
i

p p p p

y x j ji j ji j ji j ji

j j j j

a a x b b x b b x c c x     

   

             

The relationship among i , ( )iy x and yi is shown in Figure 1. To meet the requirement on i , namely,
1 1

( )( ) ( ),
i iy y x     the two inequalities 

0 0

(1 ) (1 )
p p

i i i i i j ji i j ji

j j

m p a x b x   
 

      and
0 0

(1 ) (1 )
p p

i i i i i j ji i j ji

j j

n p c x b x   
 

     
 

should be satisfied. 

 

 

 

 

 

 

 

 

 

Figure 1. Parameter estimation of symmetrical triangular uncertain set 

 

Generally speaking, the closer yi and y(xi) better will be the fit. Hence, we aim for estimating the parameters in 

such a that yi has the same membership function as y(xi). Because they are both symmetrical triangular uncertain 

sets, if the radius of yi and the radius of y(xi) are same under the condition of they are pretty anastomotic. As a 

result of the above observations, parameter estimation problem can be transformed into the following LP model. 
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0 0

0 0

0 0

0

min [ ( ) ( )]

:

(1 ) (1 )

(1 ) (1 )

1, 0 1, 1,2, ,

, 1, 2, , .

pn

j j ji i i

i j

p p

i i i i i j ji i j ji

j j

p p

i i i i i j ji i j ji

j j

i i

j j j

c b x n p

subject to

m p a x b x

n p c x b x

x H i n

a b c j p

   

   



 

 

 


  






    


     



    
   

 

 

 
                      (6)

 

The model above can not be solved because of the unknown parameter 𝛼 . Besides, it usually meets the 

condition 𝛼 ≥ 𝐻  If model (6) is established while  i=H it can be guaranteed that 𝛼 ≥ 𝐻 for each index i. 

Hence it can be transformed into the following LP model. 

                                   

0 0

0 0

0 0

0

min [ ( ) ]

:

(1 ) (1 )

(1 ) (1 )

1, 0 1, 1,2, ,

, 1, 2, , .

pn

j j ji

i j

p p

i i j ji j ji

j j

p p

i i j ji j ji

j j

i

j j j

c b x

subject to

H m Hp H a x H b x

H n Hp H c x H b x

x H i n

a b c j p

 

 

 









    


     



   
   

 

 

 
                    (7)

 

The solution of the above linear programming model gives the estimated value ( , , ).a b cj j j j    

3.2.2 Regression Model Based on Symmetrical Trapezoidal Uncertain Set 

Let 𝛽0, 𝛽1, ⋯ , 𝛽  be independent symmetrical trapezoidal uncertain sets, where ( , , , ), 0,1, , .j j j j ja b c d j p  
 

Let 

(xi, yi) be observed value, where xi is a vector made up of crisp numbers with  i≥ 0 and yi=(pi,qi,si,ti) is a 

symmetrical trapezoidal uncertain set with an inverse membership function  

1( ) [(1 ) , (1 ) ], 1,2, , .
iy i i i ip q s t i n             

Assume that the relationship between xi and y(xi) can be expressed by the linear function 
 

0 1 1( ) , 1,2, , .i i p piy x x x i n        

It follows from Definition 7 that 0 0 0 0

1 1 1 1

( ) ( , , , ), 1,2, ,
p p p p

i j ji j ji j ji j ji

j j j j

y x a a x b b x c c x c c x i n
   

         is a symmetrical 

trapezoidal uncertain set. By Theorem 1, y(xi) has an inverse membership function as follows. 

1

( ) 0 0 0 0

1 1 1 1

( ) [(1 )( ] ( ), ( ) (1 )( ).
i

p p p p

y x j ji j ji j ji j ji

j j j j

a a x b b x c c x d d x     

   

             

The relationship among i , ( )iy x and yi is shown in Figure 2. To meet the requirement on i , namely,

1 1

( )( ) ( ),
i iy y x     the two inequalities 

0 0

(1 ) (1 )
p p

i i i i i j ji i j ji

j j

p q a x b x   
 

      and
0 0

(1 ) (1 )
p p

i i i i i j ji i j ji

j j

t s d x c x   
 

     
 

should be satisfied.
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Figure 2. Parameter estimation of symmetrical trapezoidal uncertain set 

 

Generally speaking, the closer yi and y(xi) better will be the fit. Hence, we aim for estimating the parameters in 

such a that yi has the same membership function as y(xi). Because they are both symmetrical trapezoidal 

uncertain sets, if their toplines and baselines are same under the condition ,i H  they are pretty anastomotic. As 

a result of the above observations, parameter estimation problem can be transformed into the following nonlinear 

programming (NLP) model. 

                        

0 0 0

0 0

0 0

0

min (| ( ) ( ) | ( ) ( ))

:

(1 ) (1 )

(1 ) (1 )

1, 0 1, 1,2, ,

, 1, 2, ,

p pn

j j ji i i j j ji i i

i j j

p p

i i i i i j ji i j ji

j j

p p

i i i i i j ji i j ji

j j

i i

j j j j

c b x s q d a x t p

subject to

p q a x b x

t s d x c x

x H i n

a b c d j p

   

   



  

 

 

      

    

    

    

   

  

 

 

.

















                     (8)

 

The model above can not be solved because of the unknown parameter 𝛼 . Besides, it usually meets the 

condition 𝛼 ≥ 𝐻  If model (8) is established while  i=H it can be guaranteed that 𝛼 ≥ 𝐻 for each index i. 

Hence it can be transformed into the following model. 

0 0 0

0 0

0 0

0

min (| ( ) ( ) | ( ) ( ))

:

(1 ) (1 )

(1 ) (1 )

1, 0 1, 1,2, ,

, 1, 2, , .

p pn

j j ji i i j j ji i i

i j j

p p

i i j ji j ji

j j

p p

i i j ji j ji

j j

i

j j j j

c b x s q d a x t p

subject to

H p Hq H a x H b x

H t Hs H d x H c x

x H i n

a b c d j p

  

 

 


      






    



    

   

   

  

 

 





                     (9)

 

It follows from Theorem 3 that the nonlinear programming model (9) is equivalent to the following LP model. 

1.0 
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0 0 0

0 0

0 0

0

0

min ( ( ) ( ) ( ))

:

(1 ) (1 )

(1 ) (1 )

( ) ( ) 0

1, 0 1, 1,2, ,

p pn

j j j j ji i i

i j j

p p

i i i i i j ji i j ji

j j

p p

i i i i i j ji i j ji

j j

p

j j ji j j j j

j

i i

j

u v d a x t p

subject to

p q a x b x

t s d x c x

c b x s q u v

x H i n

a

   

   



  

 

 



    

    

    

     

    



  

 

 



, 1, 2, , .j j jb c d j p

















   



                       (10)

 

The solution of the above linear programming model gives the estimated value ( , , , ).a b c dj j j j j   

3.2.3 Regression Model Based on Normal Uncertain Set 

Let 𝛽0, 𝛽1, ⋯ , 𝛽  be independent normal uncertain sets, where ( , ), 0,1, , .j j jN a b j p   Let (xi, yi) be observed 

value, where xi is a vector made up of crisp numbers with  i≥ 0 and ( , )i i iy N m n  is a normal uncertain set with 

an inverse membership function 1( ) [ 2ln , 2ln ], 1,2, , .
iy i i i im n m n i n           

Assume that the relationship between xi and y(xi) can be expressed by the linear function 
 

0 1 1( ) , 1,2, , .i i p piy x x x i n        

It follows from Definition 7 that 0 0

1 1

( ) ( , ), 1,2, ,
p p

i j ji j ji

j j

y x N a a x b b x i n
 

    
 

is a normal uncertain set. By Theorem 

1, y(xi) has an inverse membership function as follows. 

1

( ) 0 0 0 0

1 1 1 1

( ) [( ) ( ) 2ln ,( ) ( ) 2ln ].
i

p p p p

y x j ji j ji j ji j ji

j j j j

a a x b b x a a x b b x   

   

             

The relationship among i , ( )iy x and yi is shown in Figure 3. To meet the requirement on i , namely,

1 1

( )( ) ( ),
i iy y x     the two inequalities  

0 0

1 1

2ln ( ) ( ) 2ln
p p

i i i j ji j ji i

j j

m n a a x b b x 
 

       
 

and 0 0

1 1

2ln ( ) ( ) 2ln
p p

i i i j ji j ji i

j j

m n a a x b b x 
 

         

should be satisfied. 

 

 

 

 

 

 

 

 

 

Figure 3. Parameter estimation of normal uncertain set 

In generally, the closer yi and y(xi) better will be the fit. Hence, we aim for estimating the parameters in such a 
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that yi has the same membership function as y(xi). Because they are both normal uncertain sets, if the centers and 

dispersion degrees of membership functions are same under the condition of ,i H  they are pretty anastomotic. 

As a result of the above observations, parameter estimation problem can be transformed into the following 

nonlinear programming model. 

0 0 0

0 0

1 1

0 0

1 1

0

min (| |) ( )

:

2 ln ( ) ( ) 2 ln

2ln ( ) ( ) 2 ln

1, 0 1, 1,2, ,

0, 0,1,2, , .

p pn

j ji i j ji i

i j j

p p

i i i j ji j ji i

j j

p p

i i i j ji j ji i

j j

i i

j

a x m b x n

subject to

m n a a x b b x

m n a a x b b x

x H i n

b j p

 

 



  

 

 


  






      



      

    

 

  

 

 





                      (11)

 

The model above can not be solved because of the unknown parameter 𝛼 . If model (11) is established 

while  i=H it can be guaranteed that 𝛼 ≥ 𝐻 for each index i. Hence it can be transformed into the following 

model. 

0 0 0

0 0

1 1

0 0

1 1

0

min (| |) ( )

:

2 ln ( ) ( ) 2 ln

2ln ( ) ( ) 2 ln

1, 0 1, 1,2, ,

0, 0,1,2, , .

p pn

j ji i j ji i

i j j

p p

i i j ji j ji

j j

p p

i i j ji j ji

j j

i

j

a x m b x n

subject to

m n H a a x b b x H

m n H a a x b b x H

x H i n

b j p

  

 

 


  






      


       



   
  

  

 

                        (12)

 

It follows from Theorem 3 that the NLP model (12) is equivalent to the following LP model. 

0 0

0 0

1 1

0 0

1 1

0

0

min ( ) ( )

:

2 ln ( ) ( ) 2 ln

2ln ( ) ( ) 2 ln

0, 0, 0

1, 0 1, 1,2, ,

0, 0,1, 2,

pn

j j j ji i

i j

p p

i i j ji j ji

j j

p p

i i j ji j ji

j j

p

j ji i j j j j

j

i

j

u v b x n

subject to

m n H a a x b b x H

m n H a a x b b x H

a x m u v u v

x H i n

b j

 

 

 



  

      

      

     

   

 

 

 

 



, .p





















                      (13)

 

The solution of the above linear programming model gives the estimated value ( , ).N a bj j j   

3.3 Evaluation Criteria 

Once the uncertain regression model is fitted using the available data, next arises the question of assessing the 

quality of fit. Towards this, two measures meant for assessing the quality of fit are presented below. 

(1) The relative deviation between the centers of fitted value and observed data yi: 

| | | |
0

1,2, , .1

p
y b xi j ji

j
i n

yi




  

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(2) The ratio between the widths of fitted value and observed data yi: 

( ) | |
0

1,2, , .1

p
c b xj j ji

j
i n

yi




  


 

Generally speaking, if Λ1 and Λ2 are both within 30%, the fitted uncertain regression model is considered to 

be acceptable. 

4. Numerical Experiment 

In this section, an illustrative example is given in support of the estimation procedure suggested in the previous 

section for the uncertain regression model. Consider the relationship between the heat released by some cement 

during solidification denoted by yi and two kinds of chemical compositions denoted by x1 and x2. The industry 

experience has shown that yi is not a fixed value but assumes values over an identified interval of values. Hence 

it is reasonable to treat heat as an uncertain set. The observed values are furnished in Table 1. 

 

Table 1 

i x1i x2i yi=(mi, pi, ni) 

1 7 26 (70.5,78.5,86.5) 

2 1 29 (89.3,74.3,79.3) 

3 11 56 (97.3,104.3,111.3) 

4 11 31 (80.6,87.6,94.6) 

5 7 52 (88.9,95.9,102.9) 

6 11 55 (100.2,109.2,118.2) 

7 3 71 (96.7,102.7,108.7) 

8 1 31 (68.5,72.5,76.5) 

9 2 54 (87.1,93.1,99.1) 

10 21 47 (107.9,115.9,123.9) 

 

It is known from the past experience that there exists a linear function relationship between y and x, where

1 2(1, , ) .Tx x x  That is to say, y can be expressed by x and parameter 0 1 2( , , )    via the uncertain linear 

regression model, i.e. 0 1 1 2 2( ) ,i i iy x x x     where ( , , )j j j ja b c  is a symmetrical triangular uncertain set,

0,1,2, 1,2, ,10.j i   

In order to estimate the unknown parameters ,j the LP model is built as below based on the discussion made in 

Section 3. 

                                   

10 2

0 0

2 2

0 0

2 2

0 0

0

min [ ( ) ]

:

(1 ) (1 )

(1 ) (1 )

1, 0 1, 1,2, ,10

, 0,1,2.

j j ji

i j

i i j ji j ji

j j

i i j ji j ji

j j

i

j j j

c b x

subject to

H m Hp H a x H b x

H n Hp H c x H b x

x H i

a b c j

 

 

 









    


     



   
   

 

 

                    (14)

 

The above LP problem which corresponds to the model explained in (14) has been solved by taking H = 0.4 and 

the following solution is obtained. 
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0 1 2

0 1 2

0 1 2

44.2966, 1.4132, 0.6273

48.0616, 1.4302, 0.7857

51.8270, 1.4471, 0.9440

a a a

b b b

c c c

  


  
   

 

The solution leads to the estimates 0 (44.2966,48.0618,51.8270),  1 (1.4132,1.4302,1.4471),  2 (0.6273,0.7857,0.9440). 

Then the uncertain linear regression model is 

1 2( ) (44.2966,48.0618,51.8270) (1.4132,1.4302,1.4471) (0.6273,0.7857,0.9440) .y x x x    

As one could observe, the values of Λ1 and Λ2 as shown in Table 2 are less than 30%. This supports the 

appropriateness of the fitted model. 

 

Table 2 

i 1 2 3 4 5 6 7 8 9 10 

Λ1 1.7834*10-

5 

0.0272

2 

0.0334

9 

0.0062

9 

0.0315

9 

0.0200

8 

0.0529

4 

0.0186

0 

0.0026

9 

0.0075

6 

Λ2 0.1019 0.1127 0.1229 0.1012 0.1264 0.1160 0.1467 0.1199 0.1327 0.0998 

 

5. Conclusion 

In this paper, a linear regression model based on uncertain sets that can be used for investigating the relationship 

between variables involved in an uncertain situation. The proposed model assumes the independent variables are 

of crisp nature and the dependent variable as well as regression coefficients are uncertain sets. Estimation 

procedures meant for handling situation where one encounters any one of the three uncertain sets, namely, 

symmetrical triangular, symmetrical trapezoidal and normal uncertain sets have been discussed in detail. An 

illustrative example has been given to add strength to the proposed model as well as the method of estimation. 
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