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Abstract

This report contains two parts. For part A, performing a Principle Components Analysis (PCA) and analyzing
the drivers. Then, carrying out factor analyses and comparing them. For part B, employing 5 different
quantitative models to forecast and generate moving origin horizon one forecasts of both return and volatility.
Then, figuring out the optimal weights for the portfolio and assigning the optimal portfolio. Finally, comparing
the returns and risk measure from all portfolio and models.

Keywords: MATLAB application, factor modelling, principal component analysis, dynamic portfolio
optimization, data processing and exploratory data analysis, forecasting model building

Part A — Factor Modelling
1. Principal Component Analysis
1.1 Original Data Description and Processing

The data include the historical daily index prices for the S&P ASX200 Index and the 11 Global Industry
Classification Standard (GICS) Industry sectors during the five years from 6™ April 2014 to 6" April 2019.
These 11 sectors consist of more than 43000 global companies from 24 industry groups (“GICS”, 2019). The
whole data set contains 2 null rows, 27/12/15 and 04/09/17. To make the statistics complete, the 2 null rows
could be deleted, which only occupy 0.15% of the whole data. This manipulation is reasonable because the nulls
mean no transactions occurred on those days.

1.2 Daily Percentage Return of GICS

The daily percentage returns (Simple Returns) equal to (Yi — Y1) / Y1 X 100%, where Y, represents the
adjusted closing price of today, Y., represents yesterday’s adjusted closing price.

1.3 Principal Component Analysis

Principal Component Analysis (PCA), a statistical approach employed in a multivariate system to extract
well-arranged and uncorrelated components of variation (Jolliffe, 1986). This means that each component does
not have any correlation, as shown in the Appendix table ‘Principal Components (Correlation Coefficient)’, each
pairwise correlation coefficient is zero like PC1 and the rest of PCs. However, each industry sectors should relate
to each other. Otherwise, it might be difficult to find a PC that would drive them jointly under linear relationship.
PCA aims to use the least dimensions to explain the most variations (Barber & Copper, 2012).

To perform a PCA, the first step is to estimate the correlation matrix of this finite sample. Table 1 shows all
pairwise correlations. None of the pairwise correlations are exactly equal to one or zero which represents no
clearly perfect multicollinearity or perfectly independent variables. The pairwise correlations are generally quite
strong with the smallest one 0.2554 between XTJ and XMJ ranging up to 0.7055 between XDJ and XNJ.
Therefore, the other statistics are necessary for further analyze, like p-value and confidence interval, to prove a
more precise estimation.
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Table 1. Correlation matrix

Industry XPJ XDJ  XSJ XEJ XXJ XHJ XNJ  XIJ XTJ
XPJ . . . . . 0.3293 0.3634
XDJ . ; 0.4145
il 0.4544 0.4842 0.3800 0.4092
(= | 02950 0.4866 0.4466 0.3428 04540 0.4161 0.2760 0.3397
001 04978 06645 0.5892 0.5537 0.3834 0.4288
0 04311 05962 0.4991 0. 0.5343 0.5496 0. 0.2855 0.4027
0 05847 |0.7085 05750 0.4540 06215 0.4848 0.3985 05288
(i 03293 0.6087 0.4842 04161 0.5537 04384 03461 0.3053
000 | 02991 04860 0.4538 0.5447 0.2554 0.3241
Gl | 03634 04145 0.3800 0.3834 0.3344
1 05324 04889 0.4092 0.4288

XMJ

The p-values as shown in the appendix table named ‘P-Value (Correlation Coefficients)’ of these correlation
coefficients is less than 1%. Therefore, the correlation coefficient is statistically significant not zero at 95%
confidence level, even at 99% confidence level to prove the linear relationship among these 11 industry sectors.
Additionally, from the tables named ‘Upper Bound (Correlation Coefficients)’ and ‘Lower Bound (Correlation
Coefficients)’ show all the confidence level are between zero and one. All the evidences mean these indices are
related but would not cause multicollinearity. Thus, the data is suitable for PCA because all simple returns are
positively linear associated but not colinear.

Table 2. PCA

Industry 1stPC  2ndPC 3rdPC 4thPC 5thPC 6thPC 7thPC 8thPC 9thPC 11th PC
Weight  Weight Weight Weight Weight Weight Weight Weight Weight Weight

S S S S S S S S i S

02581 00760 04233 00560 -0.0718 -0.2456 -0.4401
01651 -0.1067 00205 -00012 -01174 -0.1242 00358  -0.0107 -0.4150
01250 -0.0455 00353 00875 05172 -0.2166 [JOISBAN -0.3140 02445 00363
06476 01682 00491 -05713 -00301 -0.0526 -0.0486 -0.0488 -0.0141  0.0161
00779 00916 00158 01399 -0.3459 -0.2440 -0.2173 | O.7784 | -01774 00525
02661 -03541 00030 -0.2475 -0.1470 [JOIZ7BAY| -0.0501 00028 -0.1564 -0.243
01667 01037 00810 00233 00407 00201 -01001 -0.1268 0.3160 [Oi7361
01776 -03787 05640 -0.0806 | 04776 03306 00030 -0.1016 -0.2041 -0.0738

- 00103 -0.0243 - 01412 02657 -0.0215 -0.1034 -0.0175 -0.0681

02428  -0.3326 - 03910 00079 00050 01698 -0.0210 00170 -0.0106  -0.0020

02271 -02047 01292 - -0.0448 - 00052 03951 02489 -0.0795 -0.0582

Percentage 50.8914 12.8977 7.8729 6.6489 4.6697 3.9576 3.5145 3.1412 2.7926 2.0700 1.5435
% Variance

@k 50.8914 63.7891  71.6620  78.3109 82.9806 86.9382 90.4527 93.5939 96.3865 98.4565  100.000
% Variance 0

-0.1771

From the above PCA components Table 2, the first principal component can explain about 50.89% of the
variation. The cumulatively explained percentage variance are 63.79%, 71.66%, 78.31%, 82.98%, 86.94%, 90.45%
respectively for the second to seventh principal component. Generally, the principal components, which explain
70%-90% (cumulative) of the variation, are preferable to choose. Here the first six principal components are
chosen because these six principal components have already explained 86.94% of the variation. Though the
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seventh principal component increases the explained variation to 90.45%, it does not achieve the aim of
dimensionality reduction significantly from the original 11 components. Due to the seventh principal component
only have about 3.51% explanatory power. Thus, six principal components are enough to explain about 87%
variation in the original series and is probably the best choice.

2. First Four PCs Analysis
2.1 Equations
The equations for the first four principal components are:

Wy, =0.2151x XPJ, + 0.2862 x XDJ, + 0.2640 x XS]+ 0.4633 x XE]J, + 03149 x XX]J, + 0.2675 x
XHJ, +0.2512 x XNJ, + 0.3250 x XIJ, + 0.3707 x XMJ, + 0.2428 x XTJ, + 0.2271 x XU],

Wy = -0.2581 x XPJ, —0.1651 x XDj, —0.1250 x XS], + 0.6476 x XEJ, —0.0779 x XXJ, —0.2661
X XHJ, —0.1667 x XNJ, —0.1776 x XIJ, +0.4270 x XMJ, — 0.3326 x XTJ, — 0.2047x XUJ,

Wi, = 0.0760 x XPJ, —0.1067 x XDJ, —0.0455 x XS], + 0.1682 x XEJ, —0.0916 x XXJ, —0.3541
X XHJ, —0.1037 x XNJ, — 03787 x XIJ, —0.0103 x XMJ, + 0.8048 x XTJ, +0.1292 x XUJ,

Wi =0.4233 X XPJ, +0.0205 X XDJ, +0.0353 X X5], + 0.0491 x XEJ, + 0.0158 x XXJ, + 0.0030 x
XHJ, +0.0810 X XNJ, —0.5640 x XIJ, —0.0243 x XMJ, — 03910 X XT], + 0.5817 x XUJ,

2.2 First Four PCs Analysis
2.2.1 The 1* Principal Component (PC1) — Market

PC1 is asserted as market-wide effect due to it is positively correlated with all of 11 industry sector’s simple
returns. The magnitude of the coefficients is quite similar except for XEJ, XMJ and XIJ with coefficients 0.4633,
0.3707 and 0.3250 respectively. The rest of indices is in the range between 0.2 to 0.3 from 0.2151 to 0.2862.
PC1 distinguishes XEJ and XMJ from the others as shown in the Appendix Figure 1. The correlation between
PC1 and the mean of all industry sectors is 0.9936. The correlation between PC1 and the market return is 0.9606.
The visualize plots of two correlation are showed as followed. All the signs indicate that PC1 is market.

PC1 againstaverage of11 retums PC1 againstm arketretumn
T T T T T T T

T ]

market return

210 b

PC1 PC1

Figure 1. PCA 1 against average of 11 returns and market return

2.2.2 The 2™ Principal Component — Commodity Price

PC2 might be asserted as commaodity price. It is positively linear associated with XEJ (0.6476) and XMJ (0.4270)
but negatively linear associated with the rest from XTJ (-0.3326) to XXJ, which further distinguishes XEJ
(-0.0779), XMJ from the others as shown in the appendix Figure 2. The commodity price especially crude oil
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price, metal price and natural gas price, which may affect the mining and energy companies (Beattie, 2018).
When prices increase, the production costs also increase for manufacture factories due to oil price, one of the
most important manufacture materials for most daily products. However, for mining and energy companies, their
production costs are relatively stable (Maverick, 2015). Hence, when the price is high, the share price increases
as future cash flow increases (Resource and Mining Stocks, 2019). For XPJ (-0.2581) and XUJ (-0.2047) with
the negative relation, as the commaodity price increases, individuals decrease utility usage and rental expense
with fixed income. XHJ (-0.2661), similar with XPJ and XUJ, normal families pay less attention on health care.

2.2.3 The 3" Principal Component — 5G and NBN

PC3 might be asserted as Internet like NBN and 5G. It is strongly positive on XTJ (0.8048) and negative on XHJ
(-0.3541) and XIJ (-0.3787). So PC3 distinguishes XTJ, XHJ and XIJ from the rest industry sectors. The
remaining have weak or near zero eigenvalues like XPJ (0.0760) and XSJ (-0.0455). The policy of carrying out
NBN has boosted the communication services, which NBN is the high-speed Internet fiber network (Purvis,
2013). Recently, Telstra has announced that they will sell Australian’s first 5G device (The West Australian,
2019). Baillieu analysts Nick Burgess also states that Telstra’s 5G strategy might be a potential opportunity from
the view of the Telstra investment case (Livewire, 2019). Therefore, the high speed of internet and the coming
5G mobile era have stimulated the communication industry sector index. However, the NBN and 5G do not
stimulate X1J, the information technology sector. It mainly because the increasing internet speed does not
connect to the cloud computing, big data and mobile computing that the primary functions in the information
technology sector (Compare Sector Characteristics, 2019).

2.2.4 The 4" Principal Component — Exchange Rate

PC4 might be asserted as exchange rate. It is relatively strongly positive with XUJ (0.5817) and XPJ (0.4233).
X1J, XMJ and XTJ with the negative loadings of -0.5640, -0.0243 and -0.3910. The rest are around zero. Thus,
PC4 distinguishes XUJ and XPJ from the remaining sectors. Under the surge of studying abroad, Australia has
become one of the most popular choice for international students (Koprowski, 2016). Koprowski stated that the
number of international students rises sharply to 500,000 (2016). This directly make Australia become the fourth
largest country that export education (2016). The national education department announced that in 2025, there
will be more than one million international students (AIE2025, 2019). Furthermore, the exchange rates decrease
means the depreciation of the AUD in terms of other currencies. It might be much less expensive for the parents.
When the population increases, the rental return and gas, electricity and water consumption increase. The
depreciation of the AUD which might also mean the government prefer to stimulate the economics. Therefore, it
is slightly positive related to the rest of industries. However, XIJ and XTJ, the communication and information
technology sector do not boost by the depreciation of AUD, mainly because they are sensitive to economic
cycles (Compare Sector Characteristics, 2019). The weak exchange rate means the country is trying to boost the
economy.

3. Factor Modelling
The main goal of factor modelling aims to find the least number of factors explaining most variation.

m=1 m=2 m=73 m=4 m=5
P-value 3.6E-132 2.74E-39 7.48E-07 0.0208 NA
Chisq 764.374 273917 74.7211 30.8537 NA
Dfe 44 34 25 17 10

loglike -0.6077 -0.2179 -0.0595 -0.0246 -0.0112

The overall R? is 45%. The model is moderate strength fit to the data. The single factor captures from about 24%
(XTJ) to 72% (XDJ) of the variation in each industry sectors’ returns (Adjusted R?). Furthermore, the
chi-squared test statistics is 764.374 with a p-value of 0. Thus, the null hypothesis that the number of factors
equals to 1 is rejected. Additionally, the SER are between 0.4541 (XNJ) to 1.2209 (XEJ). They are significantly
large for the daily return prediction error. Hence, one factor model is not good enough.
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m=2
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= - 08 AT 040 ] : 02593? 01383 ;-‘:::9 0.6819 aaqujm
D7 07700 02348 04846 07163 : e . ' e
) D7 06955 03310 02344 04842 07168
. neTEs 04183 0&6s 0358 XSI 0.5300 03443 04235 06507 05179
XET 09255 14905 12209 03650 i} ’ ] o ’ ”
XEJ 0.4220 11562 08323 09123 06454
o0 0.7956 03868 06219 06207 o vess 0 0551 0626 0624
bz 0.7122 05454 07385 04819 i ' ' - = e
XEHT 07035 02122 05127 0160 05129
X 0.6306 02062 04541  (.6919 )
T 06379 02665 01916 04377 07139
bl 0.8080 07026 08382 04816
i) 06919 04085 07097 08424 04764
T 0.7789 09981 09990  (0.3781 - )
T 0.3359 10185 04545 06742  0.7168
XTI 0.5730 1054 L0249 02381 - 055 0216l Lose  Loms o4l
7 0.5788 06374 07984 03445 i - - ol ~
T 05558 02055 06212 07882 03611
Parcentage
) Percentage
(%) %)
Vari 4458770187 *

Varance 346239

The overall R? for two factors is 10% over than one factor model. The adjusted R? for each industry sectors’
return has increased especially XEJ and XMJ, XSJ and XIJ with small decrease. The chi-squared test statistics is
273.917 with a p-value of 0. Thus, the null hypothesis that the number of factors equal to 2 is strongly rejected.
The SER has lightly decreased to the range of 0.4377 (XNJ) to 1.0226 (XTJ).

Industry  Ist 2nd 3rd Specific  SER R™2 Industry  1st 2nd 3rd 4th Specific SER R™2
Factor Factor Factor Vanance adjusted Factor  Factor Factor Factor Variance adjusted
Loadings Loadings Loadings Loadings Loadings Loadings Loadings
XPI 02247 06831 0.1163 03119 05585 0.6298
DI 05688 04263 02937 02361 04860 07147 XEJ 02170 06650 0.1200 00935 03247 0.5698 0.6146
X1 04552 03783 03165 04279 06512 05128 XDJ 0.5458 04157 02833 02189 02288 04784 0.7235
i 03617 03055 11515 07969 0.8927 06605 XsJ 04199 03626 03028 02906 03944 0.6281 05510
X 0.5195 04120 04400 0.3866 06218 0.6209 g gi;gi 5;332 éifé; gfgﬁ ﬁig; 3?3;3 g;ifi
s v o o oo el e
XNJ 04994 04542 02370 -0.0236 01571 0.3964 0.7653
X 08285 01859 03364 0.5213 0.7220 0.6154 XU 08167 01842 03382 01200 05257 0.7251 0.6121
XMy 03206 02322 05857 0.4765 0.6903 0.7031 XMJ 02904 02246 10751 0.0235 03136 0.5600 0.8046
Xy 0.3487 04215 02000 1.03%6 1.0196 0.2461 XT7 03144 04008 0.1830 02547 10137 1.0068 0.2648
xuJ 02141 06075 02009 0.5171 0.7191 0.4682 XUJ 02099 06133 01956 0.0471 05118 07154 0.4737
Percentage Percentage
(%) (%)
Variance  58.3850 Variance  59.4204
m=3 m=4

The overall R? for three factor model and four factor model is about 58% and 59% respectively with only 3%
and 4% increase from two factor model. The chi-squared for these two models are 74.7211 and 30.8527. Their
p-values are 0 and 0.0208. Both are rejected at 95% confidence level. This means that three factor model and
four factor model are not good enough. Though XPJ, X1J and XMJ for their individually adjusted R? has
increased, XTJ only have 26.48%, which is too low.
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Industry  1st Factor 2nd 3rd 4th sth Specific SER R"2 Industry  1st Factor 2nd 3rd 4th 5th 6th Specific SER R™2

Loadings Factor Factor Factor Factor Variance adjusted Loadings Factor Factor Factor Facter Factor Variance adjusted

Loadings Loadings Loadings Loadings Loadings Loadings Loadings Loadings Loading:
XPJ 0.2305  0.6503 0.1186 0.1330 0.0683 0.3302 0.5746 0.0081 XPJ 0.1786  0.635% 0.1071 01523 0.1561 0.0926 0.3388 0.5820 0.387%
XDI 0.5610 03969 02832 0.1491 0.1549 02290 04785 0.7233 XDJ 0.4787 0.3%67 02687 0.1980 02004 02178 0.2422 04921 0.7074
X8I 0.4399 03415 03053 0.13%0 02345 0.3948 0.6283 0.3506 Xs1 0.333% 03089 02782 01830 02112 04568 03074 05545 0.6500
XEJ 0.3836  0.2864 1.0754 0.1545 0.1159 0.9241 09613 0.6063 XEJ 0.3130 02805 1.0458 02326 02066 0.1727 0.9500 0.8747 0.3932
XXI 05094 03750 04297 0.1536 02261 03604 06003 0.6466 X7 0.3537 03161 03592 07824 0.1730 0.1364 0.0051 0.0714 0.9%30
XHT 0.6477 03595 01570 0.0725 0.0252 04733 0.68%0 0.5504 XHI 0.6110 03785 0.14% 01737 00270 0.1721 0.4530 0.6731 0.36%6
XNJ 04939 04421 02310 0.1116 -0.0744 0.1588 03985 0.7628 XNJ 0.4512 04537 02328 01228 0.1086 0.0883 0.1712 04138 0.7443
X7 0.8280 0.1458 03307 0.1821 -0.0094 035058 0.7112 0.6268 X1 0.8258 01413 03204 01803 02908 0.0566 0.4305 0.6561 0.6824
T 0.3001 0.2167 1.0571 0.0897 -0.0298 03414 0.5843 0.7873 XMT 0.2587 02157 1.0616 0.1640 0.0916 0.0852 0.3218 0.5673 0.7995
XTI 02217 02665 0.1487 1.1084 00339 0.0069 00830 09950 XTI 0.2195 03494 01578 0.1256 05586 0.1098 0.8437 0.9185 0.3881
XuT 0.2140 05988  0.1942 0.1363  0.0074 0.5117 0.7153 04738 Xuy 0.1718 0.6059 0.1893 0.0891 0.1516 0.0791 0.5028 0.7091 0.4830
Percentage Percentage
(%) (%)
Variance  67.2843 Variance  64.7345
m=5 m=6

For the 5-factor model, the overall R? has increased to 67.28% and the individually adjusted R? is from 55% to
almost 100% like XTJ. The p-value on the hypothesis that m = 5 cannot be calculated, since one of the specific
variances is too close to zero. For the 6-factor model, the overall R? decreases from about 67% to about 65%
when m = 5 (See Appendix). For the 7-factor model, due to the M is too large for the number of the observed
variables. Therefore, both the 6-factor model and the 7-factor model is not suitable for these 11 industry sectors’
returns. Combine all the situation, the 5-factor model might be the best model. The equations are showed as
followed.

Rxpy; = 0.0361 + 0.2305F; + 0.6503F + 0.1186F3; + 0.1330F 4 + 0.0683Fs; + &1
Rxpis=0.0244 + 0.5610F; + 0.3969F 5 + 0.2832F3; + 0.1491F 4 + 0.1549F 5, + &2,
Rxsiy = 0.0116 + 0.4399F;; + 0.3415F 3 + 0.3053F3; + 0.1590F 4 + 0.2345F 5, + &3,
Rxgr = -0.0062 + 0.3836F; + 0.2864F» + 1.0754F 3 + 0.1545F4 + 0.1159F 5, + €4,
Rxxiy = -0.0026 + 0.5094F ; + 0.3750F, + 0.4297F3 + 0.1536F 4 + 0.2261F 5 + &5,
Rxnrs = 0.0640 + 0.6477F; + 0.3595F 5 + 0.1570F3, + 0.0725F 4 + 0.0252F5; + €6
R = 0.0377 + 0.4939F |, + 0.4421F5 + 0.2310F 5, + 0.1116F, - 0.0744F5; + &7,

Ry = 0.0470 + 0.8280F i + 0.1458F5 + 0.3307F3 + 0.1821F4 - 0.0094F 5 + €3,
Rixvy = 0.0289 + 0.3001F, + 0.2167F2 + 1.0571F3, + 0.0897F 4 - 0.0298F5, + €9,

Rxtsy = -0.0255 + 0.2217F 1, + 0.2665F 2 + 0.1487F3 + 1.1084F 4 + 0.0339F 5, + €10,
Rxury = 0.0333 + 0.2140F ; + 0.5988F + 0.1942F3, + 0.1363F4 + 0.0074Fs, + &1,

FM =5 (Method 1) FM =5 (Method 2)
Industry R"2 adjusted SER R"2 adjusted SER
XPJ 60.8099 0.5746 68.5077 0.2653
XDJ 72.3318 0.4785 72.0624 0.2312
XSJ 55.0564 0.6283 55.9861 0.3866
XEJ 60.6273 0.9613 99.8438 0.0037
XXJ 64.6634 0.6003 66.9484 0.3371
XHJ 55.0360 0.6880 71.5832 0.2991
XNJ 76.2815 0.3985 71.4734 0.1910
XI1J 62.6813 0.7112 86.4715 0.1834
XMJ 78.7274 0.5843 97.0349 0.0476
XTJ 99.5000 0.0830 99.0209 0.0135
XuJ 47.3785 0.7153 73.8663 0.2541
Overall R*2 67.2845 77.4362

4. Comparing Method 1 and Method 2 of Factor Modelling

Through re-estimating a factor model when m = 5 by applying the second method, exploiting a PCA analysis
decomposition. The first five principal components are from question 2. By comparing the method 1 and method
2, the above figure shows that method 2 is a better one.
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The adjusted R? for XPJ has increased from 60.81% to 68.51%. XDJ’s adjusted R? has decreased slightly from
72.33% to 72.06%. For XSJ, which almost stay at the same level, between 55% to 56%. XEJ’s adjusted R? has
increased significantly from 60.62% to 99.84%, which can be explained totally. XXJ has increased slightly,
about 2.3% to 66.95%. XHJ has increased over 16% to 71.58%, which is quite dramatically. However, XNJ has
dropped a little to 71.47%. Both XIJ and XMJ has improved the adjusted R? considerably to 86.47% and 97.03%
respectively. Particularly, the XMJ, whose variance has already could be explained over 90%. XTJ has declined
slightly, while its adjusted R? still stay at 99%. It could be asserted as completely explained. The last one, XUJ,
has raised from 47.38% to 73.87%, from the poor level to good one.

Due to the increasing of the adjusted R? all the SERs have decreased. Especially for those adjusted R? have
increased significantly. In addition, the overall R® has increased from 67.28% to 77.44%, which means the
overall variation could be explained increased about 10%.

Part B — Dynamic Portfolio Optimisation
5. Data Processing and Exploratory Data Analysis (EDA)

To build the suitable time-series forecasting models, analyzing the percentage log return of XXJ, XMJ and XTJ

Index is indispensable. Then converting the data to percentage log returns (100x log(PL)) and splitting the data
t—-1

sets into two parts: the in-sample and the forecast sample. Since the forecasting model build by using on the time

series data from 7/4/2014 to the 6/4/2018, this section statistical analysis focuses on data in this learning period.
The plot below provides the visualized movements of the log returns. All of three series percentage log returns
stay around 0, which may imply these three assets follow the mean stationary. However, the variances seem not
stationary based on some significant fluctuations existing during the period.

8ﬁgure 5.1 Percentage Log Returns for 3 serires of index values in the learning sample
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To further statistical analysis, the summary statistic table of the three indices is showed below:

Table 2. The summary statistic table
Mean Median Std Min Max Skewness Kurtosis
XXJ -0.0050 0.0534 1.0332 -5.0415 4.2102 -0.2886 5.0831
XMJ 0.0078 -0.0341 1.3226 -6.0939 6.0415 0.0070 4.4867
XTJ -0.0440 0.0051 1.1201 -10.0600 3.5724 -1.4395 12.7851

The means of the three indices are close to 0 and satisfy the assumption by the figure 5.1 and the standard
deviation of the three indices are larger than 1. Moreover, the XXJ index and XTJ index have the negative
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skewness and the skewness of the XMJ is positive. Meanwhile, all the kurtosis is larger than 3, which indicates
they have fat tails. According to the histograms of the three indices below, the outliers exists in the three indices.
These signs imply they are not followed the normal distribution and can be assumed as follow student-t
distribution.

Histogram of XXJ log returns
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Figure 2. Histograms of the three indices

6. Forecasting Model Building
6.1 Model Selection and Motivation

According to the statistics analysis in the previous section, the three indices percentage log returns follow the
mean stationary. Furthermore, the autocorrelation effects of the three indices do not exist. These imply that the
constant mean equations can be applied to these indices. In terms of the variance, the ARCH, GARCH,
GJR-ARCH, GJR-GARCH models are chosen to represent the assets’ volatilities.

- ARCH model can describe the lag residual error to predict the variance of innovation change.
- GARCH model import the number of lag variance errors to solve the time-dependent variance issue.

- GJR-ARCH and GJR-GARCH model can be applied to the asymmetric statistical data by employing
the leverage term.

- Ad-hoc model extracts a certain number of previous time series data and calculates their expected value
as the following forecast return and variance.

Also, Ad-hoc model can be set as the benchmark model for comparison. Considering the asset distributions, the
model with the student-t distribution need to be utilized.

6.2 Model Analysis
6.2.1 Model Assumption Test

To choose the suitable forecasting models with the appropriate mean and volatility equation, the distribution of
indices log returns requires further verification, which is corresponding to the previous model assumption. The
autocorrelation effects of the three indices are tested by the Autoregression Function (ACF) plot and Ljung-Box
(LB) test.
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Figure 3. XMJ log return and ACF plot

Firstly, the XMJ log return at the in-sample data seems follow the mean stationary. The ACF plot above shows
that the correlation dies down to 0 quickly at lag 1, and all correlations presented within the confidence interval
indicates that the marginally significants does not exist in the first 50 lags. The LB test can verify the existence
of the autocorrelation and the null and alternative hypothesis are showed below:

Ho: p1=p2=...=pm=0
Hi:atleast pi#0;i=1,...,m
The LB test statistic equation is:

m

p2
Qm:T(t-}-Z)E(Tii)

i=1
For the LB test of the XMJ index, the p-value of lag 5 and lag 10 are 0.1439 and 0.1346, which indicate that no
autocorrelation existing and H, cannot be rejected at the 5% significant level. Therefore, the constant mean
equation is suitable for the XMJ index.

Secondly, the Jarque and Bera (JB) test can diagnose whether time series are normally distributed or not by
checking their sample skewness and kurtosis. The null hypothesis and alternative hypothesis of this joint test are
shown as below:

Ho: skewness = 0 & kurtosis = 3
Hj: either skewness # 0 or kurtosis # 3

nf, (k- 3)°
]B—6<S o

The sample skewness and kurtosis of XMJ are: 0.0070 and 4.48667. The p-value of the JB test is close to zero,
so the null distribution is strongly rejected at the 5% significant level, even at 1% significant level. This
concludes that either the sample skewness does not equal to zero or kurtosis does not equal to three. Therefore,
XMJ does not follow the normal distribution.

The test statistic is:

Furthermore, the Engle’s ARCH test can prove whether the ARCH effect exists in the mean-corrected returns of
the series. The null hypothesis of this test is that no ARCH effects in the first 5 and 10 lags. The p-values for lag
5 and lag 10 are 0.0002 and 2.3125xe-08 respectively. Therefore, the null hypothesis is strongly rejected at 5%
significant level. This indicates that the ARCH effects exist in both lags.
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In conclusion, all the model assumptions are proved based on the several tests above. Those models can be
applied to the forecasting process.

6.2.2 Benchmark Model for 3 Indices — Ad-hoc (25) Model

Ad-hoc model is set as the benchmark model to compare with these GARCH models above. Using Ad-hoc
model to generate the return and volatility forecasts of three indexes, the forecast based on the previous month
data (25 days), due to the assumption of 5 transaction days per week and 5 weeks per month. The equation of the
Ad-hoc model is showed below.

t
_ Vi-24Th
Tt+1 = 25

2 Yt—2a(tn — Te41)
of =—————
25
6.2.3 Model Application and Analysis — XMJ
e  ARCH(8)-t model

The AIC and SIC functions can be used to identify an appropriate ARCH model order. The XMJ’s AIC and
SIC’s plot are shown as the following. The lowest point of the AIC is 13, while the lowest one for SIC is 8.
Combing the suggestion by AIC and SIC, the model order is chosen as 8.

AIC & SIC for ARCH models

3480 T T T T
—+—AIC o
—+—SIC
3460 b
3440
3420
3400
3380
b
3360 g
0 2 4 6 8 10 12 14 16 18 20

Figure 4. AIC and SIC for ARCH (8)-t model
ARCH (8) Conditional Variance Model with Offset (t Distribution):

Parameter Value Standard Error T-Statistic P-Value
0.8033 0.1294 6.2089 5.34e-10

ARCH({1} 0.0636 0.0403 1.5778 0.1146

ARCH{2} 0.0113 0.0411 0.2744 0.7838
ARCH{3} 0.0149 0.0293 0.5091 0.6107

(ARCH{4} 01253 0.0484 2.5920 0.0095
0.0229 0.0302 0.7599 0.4473
(ARCH{6} 01477 0.0524 2.8182 0.0048
0.0567 0.0392 1.4462 0.1481

0.1058 0.0424 2.4945 0.0126

10.2340 2.8550 3.5844 0.0003
0.0148 0.0375 0.3949 0.6930
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The estimated model is:
Tt = at + 0.0148; atlFt_1~t10_2(0, O-tz)
o2 = 0.8033 + 0.0636a?_, + 0.0113a?_, + 0.0149a?_; + 0.1253a?_, + 0.0229a?

+0.1477a2_¢ + 0.0567a2_, + 0.1058a2_g

The t-statistics vary from 0.27 to 6.21 in a big range. Not all of them are greater than 2. Hence, some of these
parameter estimates are significantly different to zero at 5% significant level, such as Constant, ARCH{4},
ARCH{6} and ARCH{8}. Others are not significantly different to zero. The p-values of these parameters support
this conclusion.

The following plots show that the standard deviation process performs nice and smooth and locates nicely on the
shoulder of the returns data.

ARCH (8)-t Model Innovations
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Figure 5. The ARCH (8) —t model standard deviation and XMJ log return

Firstly, the standardised residual (?) need to be transformed to a normal distribution from a Student-t
t

distribution with degree of freedom (df) of 10.23. So, the transformed standardised residuals, as presented in the
below figure left part, there is no apparent autocorrelation or heteroskedasticity exists in both ACF plots. Yet, the
p-values from the LB test, when m = 13 and m = 18, with df of 5 (13-8) and 10 (18-8) are 0.0300 and 0.0584,
respectively. Thus, the constant cannot model the mean equation perfectly. The p-values of the transformed
squared standardised residuals through a LB test are 0.0910 and 0.0831. Hence, ARCH effects do not exist at 5%
significant level.

Secondly, the right graph in the below, the histogram of transformed standardised residuals could be asserted as
a normal distribution though there might be two to three outliers. While, through the qq plot, all the transformed
standardised residuals lie into the range between -4 and 4 prove the normality of distribution. Additionally, JB
test could be applied, from which the p-value is equal to 0.5, so the null hypothesis is strongly not rejected.
Furthermore, the sample skewness and kurtosis are: 0.0030 and 3.0118, which seem quite close to a normal
distribution. Hence, the distribution seems like a standard Gaussian at 5% significant level.
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ARCH(8)-t Transformed Standardised Residuals
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Figure 6. Assess the ARCH (8) —t model

e GARCH(1,1)-t model
GARCH(1,1) Conditional Variance Model with Offset (t Distribution):

T-Statistic
1.2982

Parameter Value Standard Error P-Value

0.0114 0.0088

0.9580 0.0136 70.5000 0.0000
0.0360 0.0117 3.0856 0.0020
10.2010 2.8001 3.6431 0.0003

0.0372 0.4722 0.6368

Thus, the estimated model is:

Tt = at + 00176, at|Ft_1~t10.20(0, O-t-z)
o2 = 0.0114 + 0.0360a?_, + 0.958007

The t-statistics GARCH{1} and ARCH{1} are above 2, especially GARCH{1} which is about 70.50. Thus these
two parameter estimates are significantly different to 0, especially GARCH{1} at a 5% significance level. Their
p-values also show this conclusion.

The standard deviation process is smoother than the ARCH(8) model, and its location is on the shoulder of the
returns data as shown in the below:

R GARCH (1,114 Conditi " dLogRetums
‘GARCH(1,1} Standardised Residuals
5 6
s
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Figure 7. The GARCH (1,1) -t model standard deviation and XMJ log return
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Here, the standardised residual ? also need to be transformed to a normal distribution that following ~ N(0,1)
t

from Student-t distribution with df equals to 10.2. Therefore, the transformed standardised residuals, as
presented in the below figure left part with its ACF plots, indicate that no apparent autocorrelation or
heteroskedasticity exist in both ACF plots. While, the p-values from the LB test, when m = 8 and m = 13, with df
of 5 (8-3) and 10 (13-3) are 0.0829 and 0.3269, respectively. Thus, the constant cannot model the mean equation
perfectly. The p-values of the transformed squared standardised residuals (the bottom left one of Figure 6)
through a LB test is 0.0534 and 0.2573. So ARCH effects statistically significantly not exist at 5% significant

level.

Then, the right part in the below figure, the histogram of GARCH(1,1) transformed standardised residuals could
be stated as a normal distribution though there might be two to three outliers. While, through the g-q plot, almost
all the transformed standardised residuals lie close to -3 and 3, though there are some outliers. This still can
prove the normality of distribution. In addition, after applying a JB test to test normality, which the p-value is
exactly 0.5, so the null hypothesis is strongly not rejected. Moreover, the sample skewness and kurtosis are:
-0.0393 and 3.0022, which are close to a Gaussian distribution. So, the distribution might be asserted as a
standard Gaussian at 5% significant level.
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Figure 8. Assess the GARCH (1,1) -t model

e GJR-ARCH (8) -t model

By using the AIC and SIC criteria, the suitable ARCH model order for XMJ index is 14 for AIC and 8 for SIC.
Comprehensively apply these criteria, the GIR-ARCH (8) model is suitable in this section. Then the GIR-ARCH
(8) -t model is fitted below:

Table 3. MATLAB output for GJR-ARCH (8) -t Model

P-Value

4.7824e-09
ARCH{1} 0.0721 0.0576 1.2513 0.2108
ARCH{3} 0.0424 0.0457 0.9273 0.3538
ARCH{4} 0.0651 0.0495 1.3159 0.1882
ARCH{5} 0.0228 0.0361 0.6302 0.5285
ARCH{6} 0.1142 0.0626 1.8262 0.0678

Parameter Standard Error T-Statistic
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ARCH({7} 0.0983 0.0570 1.7254 0.0845
ARCH{8} 0.0824 0.0587 1.4063 0.1600
Leverage{1} -0.0119 0.0702 -0.1670 0.8653
Leverage{2} 0.1075 0.0755 1.4236 0.1546
Leverage{3} -0.0424 0.0523 -0.8105 0.4177
Leverage{4} 0.1191 0.0861 1.3828 0.1667
Leverage{5} 0.0115 0.0582 0.1978 0.8432
Leverage{6} 0.0557 0.0885 0.6291 0.5293
Leverage{7} -0.0717 0.0706 -1.0159 0.3097
Leverage{8} 0.0299 0.0750 0.3990 0.6899
10.7560 3.0586 3.5167 0.0004

Offset -0.0043 0.0378 -0.1142 0.9091

Meanwhile, the estimated model is:
1. = ap — 0.0043; a;|Fo_q~t10.76(0, 07)
o = 0.7350 + (0.0721 — 0.01191,_,)a?_; + 0.1075I,_,a?_, + (0.0424 — 0.04241,_3)a?_; + (0.0651 +
0.11911,_,)a?_, + (0.0228 + 0.0115/,_5)a?_5 + (0.1142 + 0.05571,_¢)a?_¢ +

(0.0983 — 0.07171,_,)a?_, + (0.0825 + 0.02991,_g)a?_g
However, not all the t-statistics are above 2, except for the constant term have p-values closes to 0, while the
other parameters are not significantly different to 0 at a 5% significance level.

The below plots show that the standard deviation is slightly smoother than the ARCH model and locates nicely
on the shoulder of the XMJ log returns data below.
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Figure 9. The GJR-ARCH (8) —t model standard deviation and XMJ log return

To assess the GIR-ARCH (8) model fitting, transforming the standard residual from a Student-t distribution with
10.76 degree of freedom to the normal distribution. The transformed standard residual plot and the ACF plot of
the transformed standard residual and transformed squared standard residuals shows below. There are no clear
outliers presented in the ACF plot of the standard residual. To confirm this observation, the p-values from a LB
test for standard residual, with degree of freedom equal to 5 and 10 are 0.0006 and 0.0128 separately. It seems
like the constant mean equation is not suitable enough. Meanwhile, the squared transformed standardised
residuals at the ninth lag seems to exist the autocorrelation. Since only 1 lag autocorrelations are significant
among the 20 lagged autocorrelations, the observation may be incorrect. Then the LB test applied to the squared
transformed standard residual, with df=5 and df=10, the p-values of LB test are 0.0018 and 0.0277 respectively.
This result may imply that some remaining ARCH effects are still exist in the data.
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Figure 10. Assess the GJR-ARCH (8) —t model

Furthermore, according to the histogram of GJR-ARCH (8) -t transformed standardised residuals above, its
distribution can be assumed to follow the normal distribution. Moreover, the outliers are hard to observed in this
histogram and all transformed standardised residuals lie between -4 to 4. Also, the qq plot proves the normality
of this distribution. The JB test is applied to further confirm, the p-value of the JB test is 0.5, so the null
hypothesis cannot be rejected. Also, the skewness is -0.0177 and kurtosis is 3.0227, which is close to the 0 and 3
like the normal distribution. Thus, the residuals could come from the Student-t (10.76) cannot be reject.

e GJR-GARCH (1,1) —t model

By applying the AIC and SIC criteria, the AIC choose GJR-GARCH (2,2) -t for constant mean models with the
student t distribution, while the SIC chooses GJIR-GARCH (1,1) -t. Overall, the GIR-GARCH (1,1) -t should be
selected since the SIC criteria choose the more parsimonious one. Then the relative parameters of the student t
distribution GJR- GARCH (1,1) conditional variance model showed below:

Table 4. MATLAB output for GIR-GARCH (1,1) -t Model
Parameter Value Standard Error T-Statistic P-Value

0.0086 0.0069 1.2408 0.2147
_ 0.9657 0.0121 79.9590 0.0000
0.0104 0.0111 0.9331 0.3508
_ 0.0390 0.0156 2.4953 0.0126

DoF 10.9660 3.1572 3.4732 0.0005
0.0043 0.0374 0.1151 0.9084

Thus, the estimated model is:
e = Qg + 0.004‘3; atlFt_1~t10.97(0, O-tz)

o2 = 0.0086 + (0.0104 + 0.0390/,_,)a% , + 0.965702 ,

Except for ARCH (1), the p-value of the remaining parameters is close to 0 and the t-statistic of these parameters
are larger than 2, which means these parameters are significantly different to zero at a 95% confidence level.
Since the ARCH (1) has the smaller t-statistic, this parameter may not have the significant effect on this model.

The below plots show that the standard deviation is slightly smoother than the previous GARCH model and
locates on the shoulder of the XMJ log returns data.
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Figure 11. The GJR-GARCH (1,1) —t model standard deviation and XMJ log return

To assess the fitting effect of the GJIR-GARCH (1,1)-t model, the standard residual from a Student-t distribution
with 10.96 degree of freedom also need to be transformed to the normal distribution. According to the ACF plot
of the transformed standard residual below, there are no clear outliers presented in this ACF plot. To confirm
whether the observation is accurate, the LB test for the standard residual is applied. The p-values from a LB test,
with degree of freedom equal to 5 is 0.0577 and with df=10 is 0.2887, which imply the constant mean equation
is suitable for this time series data. Moreover, according to the ACF plot of the squared transformed standard
residual, the squared transformed standardised residuals at the fourth lag and ninth lag seems to display
significant autocorrelation, but no others show any significant autocorrelation. Since only 2 lag autocorrelations
are significant among the 20 lagged autocorrelations, the observation is probably spurious under this situation.
Then the LB test applied to the squared transformed standard residual, with m=13 and df=5 and m=17 and df=10,
the p-values of LB test are 0.0922 and 0.274 respectively. This result may imply that there are no remaining
ARCH effects existing.
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Figure 12. Assess the GIR-GARCH (1,1) -t model

Moreover, based on the histogram of GJR-GARCH (1,1) -t transformed standardised residuals above, the
distribution of the transformed standardised residual can be assumed to follow the normal distribution. Moreover,
all transformed standardised residuals lie between -4 to 4 and no significant outliers in this histogram. Also, the
qq plot proves the normality of this distribution. The JB test is applied to further confirm, the p-value of the JB
test is 0.5, so the null hypothesis cannot be rejected at 5% significant level. Also, the skewness is -0.0432 and
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kurtosis is 3.0046, which is close to the 0 and 3 like the normal distribution. Thus, the residuals could come from
the Student-t (10.96) cannot be reject.

6.2.4 Model Application and Analysis — XTJ

For XTJ, follow the same process above, the relative estimated models and diagnostic test result are showing
below:

ARCH (2) model
T't = at - 0.0033; atlFt_1~t5.87(O, O-t-z)
2 = 0.9418 + 0.1009a?_, + 0.0845a%,

GARCH (1,1)-t model
T = Qg + 0.004’3, at|Ft_1~t6.08(0, 0'1-2)
o2 = 0.0913 + 0.0593a% ; + 0.861002 ,
GIR-ARCH (1) model
T't = at - 0.0006; atlFt_1~t5.64_(O, O-t-z)
02 = 1.0242 + (0.1001 — 0.03641,_,)aZ_,
GIR-GARCH (1,1) model
e = Q¢ + 00035, at|Ft_1~t6_08(0, 0}2)
o2 = 0.0927 + (0.0466 + 0.01671,_,)a’, + 0.862707 ,

Table 5. Diagnostic test results for XTJ index

ARCH(2)-t model GARCH(1,1)-t GJR-ARCH (1)-t GJR-GARCH(1,1)=t
model model model

P-Value of LB test for transformed 0.1422(m=7,df=5) 0.1802(m=8,df=5) 0.0943(m=7,df=5) 0.1760(m=9,df=5)
0.4717(m=12,df=10)  0.5902(m=13,df=10) 0.3423(m=12, df=10) 0.6008(m=14,df=10)

P-Value of LB test for squared 0.4106(m=7,df=5) 0.3377(m=8,df=5) 0.0102(m=7,df=5) 0.0279(m=9,df=5)
transformed standardized residual 0.0043(m=12,df=10)  0.1412(m=13,df=10)  0.0002(m=12,df=10) 0.0938(m=14,df=10)

P-value of JB test for Gaussian 0.0061 0.0056 0.0058 0.0054
residuals

Considering the result of model assessing for XTJ, the p-values of LB test for the residual are all larger than 0.05,
which implies the constant mean equation is suitable for XTJ index. Although the GJR-ARCH maodel still has
the significant ARCH effect on the squared transformed standardized residual since the p-value of it are lower
than 0.5, and the GARCH (1,1) model is the best model to fit the volatility for the XTJ index. However, the
result of JB test cannot prove that the residuals are following the normal distribution at 5% significant level since
the p-value is smaller than 0.05.

6.2.5 Model Application and Analysis — XXJ
For XXJ, follow the same process and results are showing below:
ARCH (5)-t model

7 = a; + 0.0294; a;|Fi_1 ~tg74(0,07)
62 = 0.3997 + 0.2123a%_, + 0.0179a2_, + 0.0778a%_5 + 0.1976aZ_, + 0.1526a%_
GARCH (1,1)-t model
7. = a; + 0.0144; a;|F,_; ~ty1,(0,02)
0f = 0.0134 + 0.0732a2_, + 0.91600%
GJR-ARCH (5)-t model
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7 = a; + 0.0115; a,|Fr_1~t11 66(0, 07)
2 = 0.3888 + (0.1395 + 0.15951,_;)a? ; + 0.05541,_,a?_, + (0.059 + 0.0114)a?
+(0.1195 + 0.16811,_,)a?, + (0.1079 + 0.0771,_s)a? s
GIR-GARCH (1,1)-t model
7 = a; + 0.001; a;|Fi_q~t105(0, 07)
o2 = 0.0179 + (0.0145 + 0.10831,_,)a? , + 0.91320% ,

Table 6. Diagnostic test results for XXJ index

XXJ ARCH(5)-t model GARCH((1,1)-t GJR-ARCH (5)-t GJR-GARCH(1,1)-t
model model model

P-Value of LB test for transformed 0.0231(m=10,df=5)  0.0332(m=8,df=5) 0.0005(m=15,df=5) 0.0323(m=9,df=5)
standardized residual 0.0270(m=20,df=10)  0.1068(m=13,df=10)  0.0065(m=20,df=10) 0.0457(m=14,df=10)
P-Value of LB test for squared 0.4617(m=10,df=5)  0.0104(m=8,df=5) 0.0018(m=15,df=5) 0.0163(m=9,df=5)
transformed standardized residual 0.0899(M=20,df=10)  0.0464(m=13,df=10)  0.0142(m=20,df=10) 0.0835(m=14,df=10)
P-value of JB test to Gaussian residuals 0.0568 0.0599 0.0345 0.0450

Based on model assessing result above, except to the GARCH (1,1), the other models’ p-values of LB test for
residual are lower than 0.05, which implies the constant mean equation may not quite suitable for XXJ index.
Although the GJR-ARCH and GARCH maodel still has the significant ARCH effect on the squared transformed
standardized residual since the p-value of it are lower than 0.5, and the ARCH (5) model seems to be the best
model to fit the volatility for the XTJ index. Moreover, the result of JB test shows that the residuals are
following the normal distribution for ARCH and GARCH maodel since their p-value is larger than 0.05.

7. Different Model Forecasts Results and Accuracy Assessment

By applying the forecasting models above, using the in-sample data to train the ARCH, GARCH, GJR-ARCH,
GJR-ARCH, Ad-hoc model to predict the future log return of XMJ, XTJ, XXJ. In this section, the forecast
horizon of 1 day and a fixed size moving window of T= 254 is used for the forecasting.

Then to assess the accuracy of the forecasting result, focusing on the difference between the forecasting results
of different models and the true values of the forecasting sample (the log return of the three series of index from
7™ April 2018 to 6" April 2019). Considering the features of the index log return, root mean square error (RMSE)
and mean absolute deviation (MAD) could set as the evaluation criteria and have the same unit as the percentage
log return in this process. While the mean absolute percentage error (MAPE) cannot be used as a suitable
measure to obtain the bias between the true values and predicted results due to the index log return could be 0.
Therefore, choosing the optimal model based on the model with the minimize RMSE and MAD value to
guarantee the accuracy of forecasting return and volatility.

7.1 Assess Return Forecasting Result

Firstly, we set the ad-hoc model as the benchmark model to assess the accuracy of the remaining advanced
model. In ad-hoc model, the average of the last month index values (assuming 5 trading day per week and 5
weeks one month) is used to predict the future percentage log return. Then we obtain the return forecasts of the
different models and visualize the comparing plot to describe the forecast result and the true values of
forecasting sample for XMJ index as followed.
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Figure 7.1 XMJ Actual return and forecasting return from the different models
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According to the plot above, except for the ad-hoc model, the rest of advanced models look like predicted value
around to 0 merely and did not follow the trend and magnitudes of the actual log returns for sample data.
Therefore, based on the following pattern, we cannot assume that the rest models fit the true data pattern as

better as the benchmark model. This pattern is also applied for the XTJ and XXJ index.
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Figure 13. XTJ and XXJ Actual return and forecasting return from the different models

However, assessing accuracy based on the plots above merely is hard to distinguish the accuracy of the different
advanced forecasting models. Therefore, to provide the enough evidence to have the confident conclusion, the
RMSE and MAD of different models for 3 indices can be calculated to further assessing as followed.

GARCH

GJR-ARCH

GJR-GARCH

XMJ

XTJ

XXJ

RMSE
MAD
RMSE
MAD
RMSE
MAD

1.0316
0.8337
1.4253
0.9857
0.9464
0.7165

1.0136
0.8180
1.3937
0.9551
0.9186
0.6888

1.0134
0.8181
1.3937
0.9548
0.9184
0.6884

1.0141
0.8182
1.3937
0.9550
0.9182
0.6883

1.0139
0.8182
1.3937
0.9548
0.9183
0.6881

According to the table above, all the highlight terms are the optimal models based on the corresponding criteria.
For XMJ index, the GARCH model has the lowest RMSE value and the ARCH model has the lowest GARCH
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model. Although different criteria imply the different optimal models, based on the slightly different, assuming
the GARCH model performs better for XMJ index. For XTJ, the model with the minimize RMSE and MAD is
the GJIR-GARCH and GARCH model. Finally, for XXJ index, the RMSE criteria imply the GJIR-ARCH maodel
is the optimal while the MAD also select the GIR-GARCH model like XTJ. Therefore, considering there are 50
percent of probability the GIR-GARCH model perform better than the other models, the GIR-GARCH model
can be assumed as the appropriate forecasting model for these indices.

7.2 Assess Volatility Forecasting Result

In this section, firstly, using the volatility proxies to measure the forecasting sample accuracy and focusing on
XMJ index with proxy 1 as sample in this process. The plot below shows proxies 1 along with all forecasts —
from both the ad hoc and GARCH-type models. Focusing on the proxy 1 in green pentagram, accuracy measures
of proxy 1 are usually the highest since the returns are often close to 0 but volatility forecasts never are.
According to the figure below, the GIR-GARCH (1,1) -t model performs optimally under the proxy 1.

Proxy 1 with different model forecasts
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Figure 14. Proxy 1 with the different model forecasts

Then using the RMSE and MAD to further assess the volatility forecasting results for all three stocks
individually.

According to the table showed above, for index XMJ, although the GARCH (1,1) performs better in the four

Proxyl Proxy2 Proxy3 Proxy4 MAD Proxyl Proxy3  Proxy4

ARCH 0.6997 0.5206  0.4999 0.4645 0.5740 0.4719 0.4474  0.3988

GARCH 0.6540 0.4405 0.4269 0.4063 0.5304 0.3884 0.3711 0.3365

B GJR-ARCH 0.7002 0.5181 0.4978 0.4635 XMJ 0.5727 0.4671  0.4429 0.3967
GJR-GARCH  0.6545 0.4441 0.4295 0.4065 0.5322 0.3915 0.3738 0.3378

Ad hoc 0.6295 0.3950 0.3863 0.3786 0.5018 0.3416  0.3297 0.3058

ARCH 1.0094 0.5858 0.5986 0.6526 0.7516 0.4441 0.4336 0.4275

GARCH 1.0257 0.5965 0.6074 0.6570 0.7658 0.4500 0.4410 0.4376

XTJ GJR-ARCH 1.0136 0.5912 0.6043 0.6588  XTJ 0.7562 0.4480 0.4381 0.4352
GJR-GARCH  1.0297 0.6017 0.6121 0.6606 0.7694  0.4549 0.4445 0.4399

Ad hoc 1.0220 0.5983 0.6203 0.6931 0.7398 0.4270  0.4244 0.4366

ARCH 0.6982 0.4387 0.4298 0.4260 0.5538  0.3592 0.3451 0.3222

GARCH 0.6605 0.4048 0.3977 0.3986 0.5273 0.3336  0.3194 0.2993

XXJ GJR-ARCH 0.6995 0.4372 0.4283  0.4247 XXJ 0.5516 0.3559  0.3425 0.3207
GJR-GARCH  0.6485 0.3855 0.3776 0.3785 0.5172  0.3185 0.3043 0.2850

Ad hoc 0.6559 0.4029 0.3967 0.3993 0.5314  0.3372 0.3240 0.3048
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GARCH models, the Ad hoc model has the minimize RMSE and MAD value for all of 4 proxies among the all
of five forecasting models. For XTJ, the ARCH model is selected as the optimal forecasting model under the
minimize RMSE criteria and the Ad-hoc model performs better at the MAD criteria. Meanwhile, for the XXJ
index, the GJR-GARCH model performs better at the RMSE and MAD criteria. In conclude, the Ad-hoc model
performs better in volatility forecasting for these three indices.

8. Asset Portfolio Weights Allocation

The purpose for this section is providing different rules to choose the optimal portfolio weights for the three
assets, which including XTJ that is telecommunication services, XXJ that is financials excluding A-REITs and
XMJ that is materials. There is no doubt that choosing the optimal portfolio weights for the assets is very
significant for the financial investment, it can help the investments with maximize return of the portfolio and
minimize the risk of the investment. It chooses the equally weighted rule, return rule and risk rule to allocate the
weights. The return rule means the higher return of the asset the higher weight for this asset is, and we choose
the Sharpe ratio for the risk rule to match the risk management as the question required, it follow the standard
that the higher Sharpe ratio of the asset, the higher weight for this asset is (Ritter& Chopra, 1989).

8.1 Analyzing Weights Allocation Rules

The equally weighted rule is providing the same proportion for the assets, for example, in this case it is 1/3 for
XTJ, 1/3 for XXJ and 1/3 for XMJ. It is always recognized as the benchmark, and easier to use than other
allocation rules. Normally, it can achieve the higher returns than the average returns. Therefore, the investors
who without the investing knowledge and financial skills usually use this way to invest. Additionally, the equally
weighted rule is a passive method for obtaining most variations of global opportunities, it can help the analysts to
analyze the investment environment ((Ritter& Chopra, 1989).

Comparing to equally weighted rule, the return rule is more aggressive, it may lose sight of the unforeseen
market volatilities that they may meet in the investment horizon. The standard of this rule is the weights
allocated to each asset are depended on the maximum forecasted return, which means higher forecasted return
asset, the higher percentage allocated is (Willenbrock, 2011).

The Sharpe ratio also known as the Sharp Index that is a standardized indicator of fund performance evaluation.
The Sharpe ratio in modern investment theory research shows that the size of the risk plays a fundamental role in
determining the performance of the combination. The risk-adjusted rate of return is a comprehensive indicator
that considers both benefits and risks, with a view to eliminating the negative impact of risk factors on
performance evaluation.

The Sharpe ratio formula is Sharpe ratio =

=TS
o
The Sharpe ratio is one of the three classic indicators that can simultaneously consider the benefits and risks.
There is a regular feature in investment, that is, the higher the expected return of the investment target, the higher
the risk of volatility that the investor can bear; on the contrary, the lower the expected return, the lower the risk
of volatility, so the rational investor chooses the investment target and investment. The main purpose of the
combination is to pursue maximum compensation at a fixed risk, or to pursue the lowest risk at a fixed expected
return (Zakamouline & Koekebakker, 2009).

8.2 Formulas for Calculating & Forecasting Weights Allocation for Index Portfolio

To calculate and forecast the weights allocation for the index portfolio, we choose the all observations up to and
including 6™ April 2018 as the in-sample period, and the remaining 254 data will be the forecasting period. The
allocated percentage for each index is related to the mean of performances that is forecasted. The more particular
information for the process is shown below:

Equally Weighted Rule Return Rule Sharpe ratio Rule

1/3 W. .= i Sharpe ratio;
ri= = o

z 3 WSharpe ratio,i:23
(=1 i

T —, Sharpe ratio;

W, denotes the percentage allocated for index | when using the return rule, 7; is the mean of forecasted return
for index i (i= 1, 2, 3 is the asset that our group analyzed, which is telecommunication services, financials
excluding A-REITs and materials) in the forecasting period.
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Waharpe ratio,i Means the percentage allocated for index i when using the Sharpe ratio method, Sharpe ratio; is the
Sharpe ratio for index i in the forecasting period, and the Y3_, Sharpe ratio; is the total of the Sharpe ratios for
the three series, which are XTJ, XXJ and XMJ.

9. Rebalance & Re-estimated for Asset Portfolio Weights Allocation Using Different Frequencies
9.1 Analysis the Frequency for Re-estimated

In this section, it will provide the rebalance and re-estimated for the weight every period and every 5" period for
asset portfolio weights allocation, every period presents the daily variation, and the every 5" period shows the
weekly changing. The number of re-adjust frequencies have a relationship with the cost of the transaction, with
the number of frequencies increase in the trading, the total cost such as transaction cost may increase; on the
opposite, with the number of re-adjust frequencies decrease, the transaction cost may decrease. Also, when the
frequency of trading in market is decreased, it can make the investors capture the opportunities difficultly and
make more unforeseen and uncertainties result for the investment (Ghysels et al, 2006). Moreover, if investors
cannot change their weights allocation for their asset portfolio based on the market change immediately when the
market situation have huge volatility trend, the investors may have more unforeseen loss. Consequently, adopt
more frequency to re-estimate the asset portfolio weights allocation is more accuracy than the infrequency, but it
has more discourse cost, such the time use, manpower, attention and some other resources (Leibowitz& Bova,
2011). Because the frequency of in-sample data that given is daily, to ensure the result accuracy, reliable and
confirm the market dynamics, we choose the daily and weekly frequency as our asset portfolio weight allocation
re-estimation periodicity.

9.2 Analysis the Methods for Two Frequency of Re-estimated
9.2.1 Every Period

For every period re-estimated method for the asset portfolio weights allocation, the weight will be re-calculated
every day, we use the similar formulas for asset portfolio weights allocation in 8" section, which are:

Every Period Weights Allocation Rules

Equally Weighted Rule Return Rule Sharpe ratio Rule
1/3 W, t:# W Sharpe ratio; 14+
n Zizlﬁ'”f Sharpe rauo"'t:Z?ﬂSha‘rpe ratiog e

W,i: means the percentage allocated for index | in day t when using the return rule, 7;.,, is the mean of
forecasted return in every period for index i in the forecasting period.

Wsharpe ratio,it Means the percentage allocated for index i in day t when using the Sharpe ratio method, Sharpe
ratio; is the Sharpe ratio for index i in every period of the forecasting period.

9.2.2 Every 5" Period

For every 5" period re-estimated method for the asset portfolio weights allocation, the weight will be
re-calculated every five days, we use the similar formulas for asset portfolio weights allocation in 8" section,
which are:

Every 5" Period Weights Allocation Rules

Equally Weighted Rule Return Rule Sharpe ratio Rule
f. .
W, =—Lttst Sharpe ratio; 45t
1/3 AR W i0,iit= -
Zi:1ri't+5t S 3 e Y3, Sharpe ratio; s s¢

W.i; means the percentage allocated for index I in day t when using the return rule, 7;,.s, is the mean of
forecasted return in every 5 period for index i in the forecasting period. Wsharpe ratio,i; Means the percentage
allocated for index i in day t when using the Sharpe ratio method, Sharpe ratio; is the Sharpe ratio for index i in
every five days of the forecasting period.

9.3 Analysis the Re-estimated Result

For the equally weighted rule, the mean is 0.0226% and standard deviation is 0.7839% for both every period
and every 5" period is same.
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9.3.1 Every Period Analysis

Every Period Portfolio Performance

Return Rule Sharpe ratio Rule
Model Mean Standard deviation Return Mean Standard deviation
AD-HOL 0.1979% 4.0773% 0.7636% 10.6582%
ARCH 0.0880% 3.8510% -27.1378% 425.7994%
GARCH -0.0008% 2.3382% -0.0245% 1.8175%
GJR-ARCH -0.4531% 14.6858% 16.9969% 253.1612%
GJR-GARCH 3.5790% 41.9566% 3.2184% 26.9087%

From calculated the mean and standard deviation for re-estimated the asset portfolio weights allocation using
every period frequency with three different methods that are the equally weighted, return rule and Sharpe ratio
rule, the Sharpe ratio rule weighted portfolio GIRARCH model has the highest return 16.9969% and the lowest
return -27.1378% for ARCH model with the highest standard deviation 425.7994%. In the return rule, the
GJRGARCH model has the highest return 3.5790% and highest standard deviation 41.9566%. Compare the
standard deviation under return rule and Sharpe ratio rule, the lowest standard deviation is 1.8175% under the
Sharpe ratio rule but with the negative mean of return. However, the real lowest standard deviation is 0.7839%
under equally weighted rule and with the positive mean of return.

9.3.2 Every 5" Period Analysis
Every 5" Period Portfolio Performance

Return Rule Sharpe ratio Rule
Mean Standard deviation Return Mean Standard deviation
AD-HOL 0.0506% 2.7570% -0.1392% 2.2630%
ARCH -0.0205% 5.0315% -0.0122% 3.0289%
GARCH -0.0408% 2.5842% -0.1101% 1.9381%
GJR-ARCH -1.1651% 15.3880% -3.8858% 44.8532%
GJR-GARCH 3.2839% 59.5706% -1.1277% 38.7938%

From calculated the mean and standard deviation for re-estimated the asset portfolio weights allocation using
every 5" period frequency the equally weighted rule, return rule and Sharpe ratio rule, the return rule weighted
portfolio GIRGARCH maodel has the highest return 3.2839%, but with the highest standard deviation 59.5706%
under the return rule. And under the Sharpe ratio rule, the lowest return is -3.8858% under GJRARCH model
with the second highest standard deviation 44.8532%. Comparing the return rule and Sharpe ratio rule, the
highest mean of return is occurred in the return rule and the lowest mean of return is presented in the Sharpe
ratio rule, and the lowest standard deviation is 1.9381% but with the negative mean of return that is -0.1101%
under the Sharpe ratio rule. For the equally weighted method, the standard deviation 0.7839% is lower than the
1.9381%, it is the real lowest standard deviation in these three rules, compared to the lowest value under Sharpe
ratio rule, it has the positive mean of return that is 0.0226%.

10. Use Sharpe Ratio to Compare Portfolio Performance

The Sharpe ratio indicates the risk premium of the portfolio per unit of the total risk in the portfolio, and the

formula is Sharpe ratio = r”a;rf , according to Australia government the 7 in Australia is 1.55% that is 10
14

years bond yield (Bloomberg, 2019), therefore, the result for the portfolio performance by use the Sharpe ratio is
shown below:

Return rule Sharpe ratio rule
AD-HOL-1 -0.3316 -0.0738
ARCH-1 -0.3796 -0.0637
GARCH-1 -0.6632 -0.0135 -1.9485
GJR-ARCH-1 -0.1364 0.0671
GJR-GARCH-1 0.0484 0.1196
ADHOL-5 -0.5439 -0.0615

Equally Weighted rule
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-0.3121 -0.0040
-0.6156 -0.0568 -1.9485
-0.1764 -0.0866

-0.0291

Consequently, calculating the Sharpe ratio for the rebalance result and re-estimating the asset portfolio weights
allocation using different frequencies during every first and5" period. And using the equally weighted rule,
return rule and Sharpe ratio rule, the result by Sharpe ratio shows the highest value is 0.1196 under the
GJR-GARCH model with every period frequency, which means the GJIR-GARCH model with every period
frequency under the Sharpe ratio has the best performance. The lowest value is -1.9485 under the equally
weighted rule, which has the worst performance. Under the return rule, the best performance from the
GJR-GARCH model with every period frequency, is 0.0484. For every 5" period frequency, the best
performance is 0.0291 with the GIR-GARCH model under the return rule, and the performances for the
portfolios under the Sharpe ratio rule are all negative.

11. Conclusion

In conclusion, for factor modeling, the results indicate the two-factor model performs better than the
single-factor model. For dynamic portfolio optimization, since no autocorrelations proved by ACF plots,
constant mean equation is adequate. LB test and Engle test exhibit the existence of ARCH effect. By the tests
and statistics analysis, selecting the models as follows: ad-hoc, ARCH, GARCH, GJR-ARCH and GJR-GARCH.
All models except ad-hoc help to explain the volatility dynamics but the remain ARCH effect in the volatility
equation could be a problem. Considering the forecast accuracy, the Ad-hoc model perform better in volatility
forecasting for these three indices. Then, to construct the portfolio, setting three methods: equally weights, high
return and low risk. Sharpe ratio is the best method for finding the optimal portfolio allocation. It is worth to
build the GIR-GARCH model because it has the best performance for the rebalance result and re-estimating the
asset portfolio.
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3.10E-94
5.77E-136
1.88E-102
1.51E-98
1.54E-45
1.09E-57

1.86E-136
1.18E-100
2.45E-35
3.89E-25
1.75E-50

7.05E-123
1.72E-75
2.32E-49
5.51E-92

1.63E-60
6.93E-37
1.12E-28

2.87E-20

2.73E-32 2.10E-34

Industry  XPJ

XPJ 1.0000 0.5368 0.4544 0.2959 0.4978 0.4311 0.5847 0.3293 0.2991 0.3634 0.5324
XDJ 0.5368 1.0000 0.6277 0.4866 0.6645 0.5962 0.7055 0.6087 0.4860 0.4145 0.4889
XSJ 0.4544 0.6277 1.0000 0.4466 0.5892 0.4991 0.5750 0.4842 0.4538 0.3800 0.4092
XEJ 0.2959 0.4866 0.4466 1.0000 0.5276 0.3428 0.4540 0.4161 0.6818 0.2760 0.3397
XXJ 0.4978 0.6645 0.5892 0.5276 1.0000 0.5343 0.6215 0.5537 0.5447 0.3834 0.4288
XHJ 0.4311 0.5962 0.4991 0.3428 0.5343 1.0000 0.6224 0.5496 0.3389 0.2855 0.4027
XNJ 0.5847 0.7055 0.5750 0.4540 0.6215 0.6224 1.0000 0.5969 0.4848 0.3985 0.5288
X1 0.3293 0.6087 0.4842 0.4161 0.5537 0.5496 0.5969 1.0000 0.4384 0.3461 0.3053
XMJ 0.2991 0.4860 0.4538 0.6818 0.5447 0.3389 0.4848 0.4384 1.0000 0.2554 0.3241
XTJ 0.3634 0.4145 0.3800 0.2760 0.3834 0.2855 0.3985 0.3461 0.2554 1.0000 0.3344
XUJ 0.5324 0.4889 0.4092 0.3397 0.4288 0.4027 0.5288 0.3053 0.3241 0.3344 1.0000
(p-value correlation coefficients)

Upper Bound (Correlation Coefficients)
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04964  0.4095 0.2447 0.4552 03851 05472 02793 02480 03146  0.4917
04964 | 100001 05931 04434 06325 05594 06767 05728 04427 03678  0.4458
04095 05931 [ 10000 04014 05520 04565 05369 04408 04089 03318 03622
0.2447 04434 04014 [ 100001 04867 02932 04091 03695 06511 02242  0.2900
04552 06325 05520 04867 | 10000 04937 05865 05143 05047 03354  0.3827
03851 05594 04565 02932 04937 [ 40000| 05874 05099 02891 02341 03555
05472 06767 05369 04091 05865 05874 | 10000 05602 04415 03511  0.4879
02793 05728 04408 03695 05143 05099 05602 | 40000 0.3928 0.2966  0.2544
02480 04427 04089 06511 05047 02891 04415 03928 | 10000 02031 02738
03146 03678 03318 02242 03354 02341 03511 02966 0.2031 | 40000 0.2845
04917 04458 03622 02900 03827 03555 04879 02544 02738  0.2845 | 10000
Lower Bound (Correlation Coefficient)

PC11
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2.82E-16  -5.55E-17 5.64E-17 3.52E-16 -2.46E-18  -2.32E-18  -3.09E-17  -9.72E-17
2.46E-16 1.06E-17 -1.58E-16  3.92E-17 -2.08E-17  -2.78E-17  2.36E-16
1.26E-17 1.58E-17 -6.03E-18  9.17E-17 -2.43E-16  1.21E-16
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3.06E-16 -6.54E-17  1.11E-17 2.11E-16
3.09E-16 -2.69E-16  3.36E-16
6.78E-17 6.87E-17
4.25E-17

-8.01E-17
-1.13E-16
-1.44E-16
1.41E-18
7.08E-17
-6.05E-17
-1.84E-16
2.43E-16
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SINESY
-1.57E-16
3.43E-16

2.82E-16
-5.55E-17
5.64E-17
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-2.46E-18
-2.32E-18
1.34E-16  2.53E-16  -3.09E-17  -2.78E-17 -2.43E-16
-551E-18  7.30E-17  -9.72E-17  2.36E-16  1.21E-16
Principal Components (Correlation Coefficient)
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