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Abstract 

This study explored a diagnostically cognitive assessment model for the ANOVA score model emphasizing 

semantic explanations. The study used the mixed methods designs, in which the ANOVA score model was 

decomposed into measurable components. This consists of the proficiency student model. Such kinds of data 

were transferred to a quantitative representation via the Bayesian network model of the ANOVA score model 

and semantic explanation assessment. This diagnostically cognitive assessment consists of 28 variables 

hierarchically, which are explanatory variables and evidence variables. Nine variables are explanatory variables 

that are latent. Nineteen variables are evidence variables that collect students’ learning information and 

propagate the information to the explanatory variables. The data are simulated data; the semantic explanations 

from twelve students were recorded and input into the nineteen evidence variables. Semantic explanations 

indicate 3 levels: lower level, medium level and high level. The score should be more than 82 points, which 

indicates a mastery level. The study also suggests that if a student achieves a high score in a module, the student 

has a better chance of achieving a high score in the overall assessment model.  

Keywords: ANOVA score model, semantic explanations, Bayesian network model, diagnostically cognitive 

assessment, proficiency model, and mixed methods design 

1. Introduction 

1.1 Introduction to the Focus 

The objective of obtaining an informative and practical cognitive assessment of students’ developing knowledge 

and problem-solving proficiency in complex educational domains has been recognized to be an attainable yet 

still elusive goal (Pellegrino, 2014; Pellegrino, Glaser, Chudowsky, 2001). Research on the cognitive analysis 

and modeling of semantic knowledge and methods novices and experts use to understand and solve problems in 

complex domains has advanced to the point where it is possible to specify many of the components of 

knowledge and problem-solving skills that need to be assessed in such domains. 

1.2 Conceptual Frameworks for Assessment 

Conceptual frameworks for assessment such as Mislevy’s evidence-centered design (ECD) framework provide a 

systematic conceptual basis for designing assessment to support an inference about the cognitive components of 

an individual’s knowledge and proficiency in solving problems and performing other demanding tasks on the 

basis of evidence obtained from students’ performance of such tasks (Almond, Mislevy, Steinberg, Yan, & 

Williamson, 2015; Mislevy, Almond, & Lukas, 2004; Mislevy, Steinberg, & Almond, 2000; Pretz, et al., 2016). 

Within the ECD framework, statistical evidence models have been developed and applied to enable inferences 

from evidence variables (based on task performance scores) to explanatory assessment variables, which are 

mapped to components of a cognitive proficiency model. Evidence models may consist of a statistical item 

response model for measuring proficiency or component skills in a domain (particular for evidence variables 

based on item-based tasks), or they may involve Bayesian probability networks (Jackman, 2009) for inferring 

knowledge and skill components (particularly for evidence variables based on scored observations of task 

performance). 

Despite these advances, challenges remain in designing practical cognitive assessments that can provide a valid 

and useful diagnostic assessment of students’ knowledge. Similarly, this includes problem-solving proficiency, 
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and learning in real-life situations of education and practice. First, an assessment should be able to assess 

students’ overall proficiency in complex educational domains as well as severe proficiency in specific areas of 

knowledge and problem-solving ability. Such assessment may be implemented by means of statistical evidence 

models that consist of a single or multidimensional item response model, or they may be implemented by means 

of Bayesian Network (BN) models consisting of Bayesian probability networks that include higher-order 

explanatory nodes thus enabling abductive inferences from evidence variables to states of these higher-order 

explanatory nodes (Culbertson, 2016; Koller, & Friedman, 2009; Koski, Nobel, 2009). 

2. Cognitive Assessment, Performance Assessment and Diagnostic Assessment 

Cognitive assessment should be diagnostic in the sense that, based on a student’s performance of representative 

tasks in a domain (Javidanmehr, & Sarab, 2017). It can provide valid information about a student’s mastery of a 

specific component of declarative and procedural knowledge in the domain, and about the student’s ability to 

apply such knowledge to reason, solve problems, select among alternative methods or strategies, or perform the 

actions required to successfully complete task in the domain (Ayala, Ayala, & Shavelson, 2000). Such 

assessments usually have been implemented using Bayesian networks containing nodes that correspond to a 

particular component of skills or knowledge (Mislevy, 1995) or by item response measurement models applied 

to scores on items that have been designed to assess particular skills or a subset of skills (Tatsuoka, 1983, 1995; 

Gierl, Leighton, & Hunka, 2000)  

To assess students’ knowledge and skill in solving problems in complex domains of expertise, the assessment 

should be based on the performance of authentic tasks. These should be representative of those which typically 

occur in situations of expert performance education, and training in the domain of competency or expertise being 

assessed (Ignizio, 1991). Assessments using task models that are dependent on item-based task formats. These 

formats are relatively limited in their ability to include authentic and extended task formats are relatively limited 

in their ability to include authentic and extended tasks such as occur in expert domains of learning and 

performance (Evans, 2019). 

2.1 Cognitive Assessment and Performance Assessment 

Existing technologies can facilitate the collection, recording and analysis of extensive performance data in 

natural situations and domains of performance. Such data are likely to arise in complex knowledge-intensive 

domains such as a founded in medic medicine, engineering or statistics. However, performance assessments in 

such situations require evidence rules for coding and scoring components of complex performance, either in 

real-time or based on records or products of problem-solving(Evans, 2019; Firestone, Mayrowetz, & Fairman 

(1998). 

Methods based on semantic and task analysis can be used to develop cognitive models of semantic and 

procedural knowledge (respectively) in complex domains. These models can be used to develop techniques for 

coding analysis and scoring of such records or procedures of performance (Hollnagel, 2003). In principle, both 

item response and Bayesian evidence models (Zhang, 2022) can be applied to evidence variables based on such 

coding of a performance. Such models can support inferences about overall proficiency, and diagnostic 

inferences about specific knowledge, reasoning, and procedures that are involved in and underlie cognitive 

expertise in a domain (Alexander, 2003) 

2.2 Cognitive Assessment and Dynamic Assessment 

Cognitive assessment of learning also must be dynamic allowing one to trace a student of progress in developing 

components of knowledge and problem-solving competence over time. Dynamic assessment can be 

accomplished by successively updating assessments of a student’s knowledge and competency in a domain 

based on changes in the student’s performance over a series of problem-solving tasks which occur over the 

extended period of learning and development of expertise (Lajoie, Lesgold, 1992).  

If item response models are used as evidence models to assess the changes over learning, assessments can be 

made based on student’s performance of the tasks at different times. Learning can be assessed through analysis 

for changes in these assessment measures over time. If Bayesian networks are used to support inferences about 

changes in the component of an individual’s knowledge and problem-solving skill, the Bayesian probability 

network can be updated regularly using evidence from each new performance to access changes in estimates in 

the posterior probabilities that are associated with changes in a student’s mastery of components of knowledge 

and competency (Zhang, 2016; Zhang, 2018; Zhang & Zhang, 2020). 
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2.3 Cognitive Assessment and Learning Contexts 

Finally, it should be possible to obtain diagnostic assessments within natural situations of teaching and learning. 

Assessment should be appropriate for use in learning contexts such as classrooms or other educational contexts 

in which knowledge and proficiency are developed. For example, diagnostic assessment could be based on 

practice tasks that occur within a classroom or technology-enhanced learning environments to chase students’ 

development of knowledge and problem-solving competency, and they could include the use of self-assessment 

to facilitate students’ learning and development of skills in critically evaluating their own problem-solving 

performance (Bao, Redish, 2022). 

3. Study Objectives 

In this paper, we report the results of the investigation of a BN approach to diagnostically cognitive assessment 

that we believe can contribute to meeting there are challenges (Zhang, 2022). We applied Mislevy’s 

evidence-centered assessment design (ECD) framework to develop a diagnostic cognitive assessment model in 

which Bayesian probability network (BPN models) were developed and used to make inferences about the 

components of students’ knowledge and proficiency in a domain for problem-solving in intermediate statistics 

(Mislevy, Steinberg, Almond, Breyer, & Johnson 2001; Zhang, 2007; Zieky, 2014).  

The problem-solving task used in the assessment involved applying a statistical model to analyze an educational 

research data set using analysis of variance (ANOVA). Working within this particular domain, our objective was 

to evaluate the assessment of knowledge and proficiency in solving these problems that were obtained by 

applying the BN assessment model to scored performance data of the students in our sample. We also 

investigated how the model could be updated to assess student development of knowledge and competency, and 

how assessments were affected by specific changes in response patterns (scores on evidence variables) (Mislevy, 

Steinberg, & Almond, 2000). We were particularly interested in practical assessment models that potentially 

could be embedded in instructional environments (Frederiksen, & Donin, 1999). Thus, the assessment models we 

studied were designed to that they could be embedded within a previously developed computer-based coaching 

and a practice environment that was designed to support students’ learning of ANOVA. 

A second objective was to use the BN evidence models to obtain an assessment of students’ overall proficiency 

in the domain (Baghaei, 2012). We expected the BN models to be particularly appropriate for diagnostic 

cognitive assessment in complex performance or domains.  

4. The Construction of a BN Assessment Model 

4.1 Proficiency Model and Task Model 

In the present paper, the proficiency model (cognitive model) (Xue, & von Davier, 2014) in assessment design 

consists of a hierarchical network of nodes corresponding to components of declarative knowledge (semantic) 

and procedural knowledge in a particular domain of a statistics (analysis of variance: ANOVA). The task model 

consists of tasks that require students to respond to questions that require the production of solutions to subtasks 

involved in solving a statistical data analysis problem using ANOVA and explanations of solutions to subtasks.  

4.2 BN Evidence Model 

The evidence model consists of a hierarchical Bayesian Network (BN) in which explanatory nodes correspond to 

components of semantic and procedural knowledge models, and evidence variable nodes correspond to scores on 

observed responses to questions associated with each subtask (Conrady, & Jouffe, 2022). The approach taken to 

diagnostic assessment was to update the BN network based on students’ responses to obtain estimates of students’ 

progress towards mastery (i.e., their likelihood of mastery) of components of knowledge and skill at different 

levels in the hierarchy. Overall mastery is reflected in the top-level explanatory mode in the network (Almond, 

Mislevy, Steinberg, Yan, & Williamson, 2015; Zhang, & Zhang, 2020). 

5. Research Method 

5.1 Establishment of an Assessment Structure and Model 

An assessment structure is a framework for representing an arrangement of knowledge components in a 

hierarchical network. The network structure will define links among potential explanatory variables (constructs), 

which will be used to evaluate and interpret student mastery of these learning objects (constructs) and changes in 

student mastery over the course of learning. These knowledge and skill components cannot be observed directly 

and it may be necessary for decomposed them into more fine-grained components for given assessment purposes. 

They must also be linked to evidence variables derived from observations of student performance. 
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Normally, assessment structure can be established through a semantic analysis of the content of verbal 

problem-solving or tutoring protocols, combined with the cognitive task analysis of the problem-solving. 

Assessment purposes and the desired “grain” of analysis influence the precision of the analysis carried out to 

build procedural and semantic models of required problem-solving knowledge. For the ANOVA score model, (a) 

writing the ANOVA score model component, and (b) explaining what these components refer to semantically, 

constitute two different aspects of knowledge and skill. Hence, the assessment structure consists of two 

submodels: (1) writing an ANOVA score model (a procedural model) and (2) explaining the ANOVA score 

model (a semantic model). Thus, an ANOVA score model can be decomposed into several component 

procedures which become the basis for assessment model development: 

                          

Yi(jk) is the score of individual i in group jk. To the right of the equal sign, there are five components: Grand 

mean µ, the main effect for factor αj, the main effect for factor βk, the interaction effect γjk, and residual score 

ei(jk). 

5.2 Hierarchical ANOVA Score Model Built-in BN 

Figure 1 presents a hierarchical frame representing the knowledge required to complete an ANOVA score model 

(for a two-way classification) and will be referred to as the “ANOVA Score Model (2 way)” Frame. Learner 

tasks have to be decomposed into fine-grained cognitive components. 

 

 

Figure 1. ANOVA score model and semantic explanations with BN representation 

 

ANOVA score model consists of 28 nodes: 9 explanatory variables and 19 evidence variables. The explanatory 

variable cannot collect any learning evidence/data in this assessment; the evidence variable can be used to collect 

students’ progress evidence. The Full explanations of these variables are referred to in Appendix A. 

5.3 Initializing the BN Model and Joint Probability 

The author has collected limited evidence of each component in the assessment model. It is normal that any 

Bayesian network needs to be initialized with data that can be artificial. However, doing so does not bother the 

subsequent process. Therefore the value of the top component, ANOVA Score Model Semantic Explanation 

Assessment, is set as .7 as a successful semantic explanation. 

A joint probability is the probability of two events occurring simultaneously. If they were events A and B, the 

probability of the interaction of events A and B may be written p(A ∩ B). For example, if we focus on the joint 

probability of the interaction of these variables in LHS Semantic Representation; there are eight variables are 

included. Figure 2 presents the joint probability of these variables. As shown in Figure 2, there are 6 evidence 

variables, which receive semantic explanation evidence: Dep-Var Y, Level j of A, Level k of B, jk 

Representation, Grp(jk) in 2Way Table, and Equivalence. After these evidence variables received the data the 

explanatory variable LHS Semantic Representations has been updated to 98.63%. This is from a part of the 
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network, LHS Semantics Representation. Stated differently, LHS Semantic Representation receives 98.63/100 

points if the students correctly respond to the 6 evidence variables above. 

 

 

Figure 2. The initialized Bayesian network model for LHS Semantic Representation 

 

5.4 Bayesian Network Theory and Models 

Bayesian networks (BNs) are known as belief networks, which are represented in a directed acyclic graph to 

model an assessment model (Zhang, 2022). Kwan, Chow, Law and Lai (2008) describe the Bayesian network: 

The Bayesian network uses probability theory and graph theory to construct probabilistic inference and 

reasoning models. It is defined as a directed acyclic graph with nodes and arcs. Nodes represent variables, 

events or evidence. An arc between two nodes represents a conditional dependency between the nodes. 

Arcs are unidirectional and feedback loops are not permitted. Because of this feature, it is easy to identify 

the parent-child relationship or the probability dependency between two nodes (pp. 275-289). 

Koller and Friedman (2009) state that, assuming there is a class of variables that can be designated by x1, x2, … 

xn and C. The structure can be seen in figure 3. In such an example variables x1, x2, … xn are observed. The 

upper-level variable C means a class. It represents a concept, which is supported by all of these 

observed/evidence variable xs. All of these variable xs are conditionally independent on the variable Class. Thus, 

the relationship of all of these variables can be described in a model which factorizes as: 

P(𝑐, 𝑥1 , 𝑥2 ⋯ 𝑥𝑛) = 𝑃(𝑐) 𝛱n
i=1 𝑃(𝑋ⅈ |𝑐) 

This model represents the joint distribution by using a group of variables, which include a prior distribution P(C) 

and a set of P (Xi)| C). The model indicates that a concept, which is usually an explanatory variable, can be 

supported by a group observed variable xs. 

5.5 ANOVA Score Model Semantic Explanation Assessment With Subjective Probabilities 

The values of variables, regardless of the explanatory variable or the evidence variables, are also set at .7 as 

successful semantic explanation. The assumption is that there is no evidence to indicate that many students score 

higher than in the Semantic Explanation of the ANOVA score model, so the value of .7. It is believed that 

students can master each component represented in both explanatory and evidence variables at above 70% of 
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chance after they practice the ANOVA model semantic explanation with several examples. As shown in Figure 3, 

all variables also called nodes in BN, are initialized with initial values. 

 

 

Figure 3. The Bayesian network assessment for the ANOVA Semantic Explanation 

 

As shown in Figure 3, all of these nodes including explanatory variables and evidence variables received the 

initialized values. As any variable is selected and double-clicked, the joint probability can be read. The RHS 

Score Decomposition Semantic Representation was selected, and the read value is 53.20% of the successful 

semantic explanation. We noted that this is the “basic status,” which means there is not any data as evidence to 

be input. 

 

 

Figure 4. The joint probability of the RHS score decomposition semantic representation 

 

5.6 Inputting Data into the Evidence Variables 

The data were simulated from a group of students who studied applied statistics. It was assumed that there were 

12 students. We know that there are 19 evidence variables. There are 6 evidence variables in the Left Hand-Side 

Semantic Representation; there are 13 evidence variables in the Right Hand-Side Score Decomposition Semantic 

Representation.  
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Table 1. Students’ Semantic Explanations of the ANOVA Score Model 

Student ANOVA 

Score Model 

Semantic 

Explanation 

Assessment 

LHS Semantic 

Representation 

RHS Score 

Decomposition/ 

Semantic 

Representation  

Total 

Evidence 

Number 

The 

Number 

of LHS 

Evidence 

Variable 

The 

Number 

of RHS 

Evidence 

Variable 

Assessment 

by Range 

S1 53.89 39.72 25.50 8 2 6 L 

S2 90.78 94.31 97.39 17 5 12 H 

S3 92.02 98.11 98.93 18 5 13 H 

S4 87.11 89.78 87.11 13 5 8 H 

S5 82.07 97.52 56.74 12 5 7 H 

S6 82.16 88.65 68.62 11 4 7 H 

S7 90.54 98.02 92.64 14 5 9 H 

S8 92.21 98.92 98.93 19 6 13 H 

S9 92.09 98.91 98.43 18 6 12 H 

S10 81.43 95.72 56.49 11 4 7 H 

S11 69.44 96.78  3.17 5 5 0 M 

S12 48.14 37.58  9.93 5 2 3 L 

 

6. Results and Findings 

This study developed the ANOVA Score Model for semantic explanations. The two-way ANOVA model was 

decomposed into fine-grained terms, which were given semantic explanations. Thus, the ANOVA Score Model 

is both a learning and assessment platform. The ANOVA Score Model provides students and instructors a 

scaffolding tool to acquire knowledge, develop problem-solving skills, and receive diagnostically cognitive 

assessment information. The components of evidence-centered assessment design (Almond, Mislevy, Steinberg, 

Yan, & Williamson, 2015; Mislevy, Almond, & Lukas, 2004) provides assessors with important assembling 

components for variations of diagnostically cognitive assessment. The cognitive task is the ANOVA Score 

Model:                          . With the consideration of semantic explanations, the terms of 

the ANOVA Score Model were decomposed into fine-graded components, which consisted of a proficiency 

student model (Almond, Mislevy, Steinberg, Yan, & Williamson, 2015), and then was represented in Bayesian 

Network Model as shown in Figure 3. 

6.1 Description of the Bayesian Network Assessment Model for the ANOVA Semantic Explanation 

There were two types of variables in the Bayesian network: Explanatory variable and evidence variable. The 

explanatory variable cannot be directly observed. In other words, there was at least one evidence variable as a 

child node attached to the explanatory variable in the network. The evidence variable can be directly observed. 

The data was input into the variable node. As shown in Figure 2, in the Left-hand Side Semantic Representation 

branch, there are 6 evidence variables with data inputs: Dep Var Y, Level j of A, Level k of B, jk Representation, 

Grp(jk) in 2Way Table, and Equivalence. 

There were 9 explanatory variables and 19 evidence variables in the Bayesian network model. There were four 

layers of the Bayesian network model. The author took one strand as an example which consisted of a four-level 

trajectory hierarchically: ANOVA Score Model Semantic Explanation Assessment (1
st
 level), LHS Semantic 

Representation (2
nd

 level), Interaction k for AxB (3
rd

 level), and jk Representation (4
th

 level). The author only 

focused on ANOVA Score Model Semantic Explanation Assessment, LHS Semantic Representation and RHS 

Score Decomposition/Semantic Representation these three explanatory variables, which were latent variables to 

describe and represent the levels of students’ semantic explanations 

6.2 Data Input and Students’ Semantic Explanation Score 

As shown in Table 1, there were 12 students who practiced the ANOVA Score Model for the semantic 

explanation of all the components of the score model. Their semantic explanations were diverse and indicated 
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that the range of the students received scores on the top explanatory variables was between 48.14 and 92.21. The 

author wanted to classify the levels of students’ semantic explanations into 3 levels: low level, mediate level and 

high level. The range of students’ scores was the difference of 92.21 and 48.14, which is 44.07. The range was 

divided into three equal parts, 44.07/3=14.69. Thus, the low interval of the student semantic explanation was 

between 48.14 and 62.83 (48.14+14.69), the medium level was between 62.84 and 77.52, and the high level was 

between 77.53 and 92.21. The right column of Table one indicated that there are 2 students at the low level of 

semantic explanations; only one student was at the medium level, and 9 students were at the high level. The 

model-based assessment was different from the non-model-based assessment. As shown in Table 1, Student 11 

and student 12 both scored 5/19, but their score scatters were different (refer to Appendix B). Student 11’s 5 

scores were clustered on the left—LHS Semantic Representation, which meant this student understands the 

Left-hand side semantic explanation very well, and almost knew nothing about the RHS Score Decomposition 

Semantic Representation. This student scored 69.47 at a medium level. Student 12’s score was also 5, but it 

scattered diversely. This student scored 48.14, which was a low level. The fact informs us that clustered score in 

a model indicates a higher mastery level. 

7. Discussion and Conclusion 

This study developed the model of a diagnostically cognitive assessment represented by using a Bayesian 

network model. This assessment model described the rationale and steps to illustrate how initiatively to build an 

alternative assessment model focusing on both learning processes and outcomes in a complex learning domain. 

Meantime, the model provided students with diagnostic information about their learning. The students 

themselves could know what aspects of the content knowledge should be further improved. 

7.1 Design of the Diagnostically Cognitive Assessment 

The assessment took the evidence-centered assessment design (ECD) as a main framework (Almond, Mislevy, 

Steinberg, Yan, & Williamson, 2015). Since Schum (1994) published the paper entitled “The Evidence 

Foundations of Probabilistic Reasoning,” evidence-centered assessment design received increasing development. 

Pearl (2009) explored the model and inference; Conrady and Jouffe (2022) mapped reasoning, graphical models 

and quantitative representation by developing the Bayesian network graph model. All these academic work aids 

researchers in alternative assessment to develop variations of the diagnostically cognitive assessment models. 

In fact, this was a mixed methods design. The qualitative research dimension was about the ANOVA model and 

term decomposition into fine-grained semantic knowledge, which consisted of a task model. When the tasks 

were delivered to a student the student proficiency model can be developed. The proficiencies with cognitive 

tasks were represented in a Bayesian network model. From the research method and design perspective, a 

Bayesian network model was the best platform to fusion the qualitative phase and quantitative phase into one 

unit. Through a Bayesian network structure, the qualitative data can be transferred to a quantitative 

representation. 

 

 

Figure 5. The Left Part of the ANOVA Score Model Semantic Explanation 

 

7.2 Hierarchical Components and Propagation From the Evidence to Explanatory Variables 

ANOVA Score Model Semantic Explanation model described a cognitive assessment process. The model was 

divided into two parts, based on the statistical score model:                          , and then 

obtained the graphical model as shown in Figure 5. There were two explanatory variables on the left part, which 

were LHS Semantic Representation and Interaction jk for AXB. These two variables were latent variables, which 
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received students’ semantic explanation information. There were six evidence variables in the left part of this 

model. The students responded to the evidence variable, and the information was propagated to these 

explanatory variables. 

As shown in Figure 6, there are six explanatory variables on the right part of the ANOVA Score Model Semantic 

Explanation model. These explanatory variables are RHS Score Decomposition Semantic Representation, Grand 

Mean PLVG, Main Effect: Level of A, Main Effect: Level of B, Interaction: AXB, Error and Additive 

Combination. The other thirteen variables are evidence variables. When the students responded to the evidence 

variables, the information was propagated to these explanatory variables.  

 

 

Figure 6. The Right Part of the ANOVA Score Model Semantic Explanation 

 

The cognitive assessment process described students' semantic explanation through the ANOVA Score Model 

Bayesian network. The author emphasized the top three explanatory variables: ANOVA Score Model Semantic 

Explanation Assessment, LHS Semantic Representation, and RHS Score Decomposition Semantic 

Representation.  

This assessment model provided moment-by-moment differential information for both students and cognitive 

feature categories. The cognitive Bayesian network will be more robust in differentiating different student 

groups and cognitive feature categories with updating evidence by the Bayesian network learning.  

There were 3 assessment patterns based on the students’ semantic explanations. In the L group, students’ 

semantic explanations were at a lower level. These students were S1 and S2, and their top-level scores were 

53.89 and 48.14 separately. There was only one student in the M group and the semantic explanations were at a 

medium level. The student was S11, and the top-level score was 69.44. There were nine students in the H group 

and their semantic explanations were at a high level. The range of the top-level scores was from 81.43 to 92.21. 

Stated differently, a student can do semantic explanations at a high level in this learning model if the student 

obtained 82 points or above 82 points.  

Briefly, The ANOVA Score Model Semantic Explanation was cognitive assessment model because the model 

embodied a cognitive progress. This model was also a diagnostic assessment model because it reported students’ 

progress and mistakes in the learning process. This model was also a dynamic assessment model because the 

students and assessors can observe the Semantic Explanation score. 

In addition, if a student achieved a high score in a module, the student had a better chance of achieving a high 

score in the overall assessment model. This was related to mastery learning theory, which can be further 

discussed. 

8. Limitations 

This study used data from 12 students. The findings and analyses have limited generalizations. The proficiency 

student model can be varied based on different expertise. The initialized values of the variables are subjective. 

The Bayesian network model becomes more robust with the increase of the sample size. Thus, the mastery level 

of the semantic explanation is relative. 
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Appendix A. Full Descriptions of Evidence and Explanatory Variables of the ANOVA Semantic 

Explanations 

Variable Name in the Bayesian 
Network 

Full Variable Name Definition and Description of 
the Variable 

Type of the 
Variable 

1. ANOVA Score Model 
Semantic Explanation 
Assessment  

ANOVA Score Model 
Semantic Explanation 
Assessment 

This is the top node/variable, 
representing the mastery level 
of the student learning in 
Semantic Explanation 

Explanatory 
variable 

2. LHS Semantic 
Representation 

Left hand side of the 
ANOVA score model 
about the Semantic 
representation 

This is the second level 
explanatory variable in the 
ANOVA score model, which 
represents the left-hand side 
terms  

Explanatory 
variable 

3. RHS Semantic 
Representation 

Right hand side of the 
ANOVA score model 
about the Semantic 
representation 

This is the second level 
explanatory variable in the 
ANOVA score model, which 
represents the right-hand side 
terms 

Explanatory 
variable 

4. Dep Var Y Dependent variable Y This is the dependent variable Evidence 

https://doi.org/10.1002/j.2333-8504.2006.tb02014.x
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in the ANOVA score model 
on the left-hand side of the 
equal sign 

variable 

5. Level j of A Levels of group levels of A j refer to level j of the 
independent variable A 

Evidence 
variable 

6. Level k of B Level of group levels of B k refer to level k of the 
independent variable B 

Evidence 
variable 

7. Interaction jk for AxB Interaction jk for dependent 
variables A and B 

jk are variable A levels across 
variable B levels 

Explanatory 
variable 

8. jk representation jk presentation/meaning jk refers to the cross 
classification cell of the table 
of subjects. 

Evidence 
variable 

9. Grp (jk) in 2Way Table Grp (jk) in 2Way Table jk refers to the 
cross-classification cell of the 
table of subjects where each 
officer is classified into a 
category for each combination 
of Factor A j and Factor B k. 

Evidence 
variable 

10. Equivalence  Equivalence of score and 
score components 

Equivalence means that the 
expressions (sum of term) 
reflecting the decomposition 
of the score on the right side 
of the equal sign is equivalent 
to the individual’s score on 
the dependent variable (the 
left side of the equal sign) 

Evidence 
variable 

11. Grand Mean Grand Mean Grand mean represent the 
average level of the 
dependent variable values 

Explanatory 
variable 

12. Grant Mean_PLVG Grand mean refers to the 
pooled mean (GMRef) 

Grand mean refers to the 
pooled mean of all scores 
(pulling over factor A and B) 
in the population 

Evidence 
variable 

13. Mean of Group Means Mean of Group Means The Grand Mean is the 
average of the group means 

Evidence 
variable 

14. Main Effect: Level of A Main Effects: Level of A A general concept of the main 
effect A 

Explanatory 
variable 

15. Main Effect Aj Main Effect Aj αj refer to the main effect of 
the independent variable 
group on the dependent 
variable, independent of 
group in the population. 

Evidence 
variable 

16. Grp Mean(j)-GM Main Effect Aj: Grp 
Mean(j)-GM 

αj=µj-µ. This term means 
main effect A can be written 
as a difference between in the 
population. 

Evidence 
variable 

17. Main Effect: Level of B Main Effects: Level of B A general concept of the main 
effect B 

Explanatory 
variable 

18. Main Effect Bk Main Effect Bk βk refers to the main effect of 
the independent variable B 

Evidence 
variable 

19. Grp Mean(k)-GM Main Effects Bk Grp 
Mean(k)-GM 

βk=µk-µ. This term means 
main effect B can be written 
as a difference between in the 
population. 

Evidence 
variable 

20. Interaction: AxB Interaction between A and A general concept of the Explanatory 
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B interaction between factor A 
and factor B 

variable 

21. Interaction Effect AB (jk) Interaction Effect AB(jk)  Y(jk) refers to the interaction 
effect of the combination of 
Factor A j and Factor B k on 
the subjects’ score—that is, a 
value of the dependent 
variable 

Evidence 
variable 

22. GrpM(jk)-M(j)-M(k)+GM GrpM(jk)-M(j)-M(k)+GM Y(jk)= µjk-µj-µk+µ. The 
interaction effect Y(jk) is the 
mean of the combination of 
(factor A) group j with Factor 
B k minus the pooled 
(marginal) mean of Factor A j 
and the pooled (marginal) 
mean of duration k plus grand 
mean (population values) 

Evidence 
variable 

23. GrpM(jk)-Eff(j)-Eff(k)-GM GrpM(jk)-Eff(j)-Eff(k)-GM Y(jk)= µjk-αj-βk+µ. The 
interaction effect may also be 
written as the mean of the 
combination of Factor A j 
with Factor B k (cell mean) 
minus the main effect of 
factor A (αj) minus the grand 
mean 

Evidence 
variable 

24. Error Error A general concept Explanatory 
variable 

25. Error Residual Var ei(jk)= Yi(jk) -µ-αj-βk+µ.- Yjk 

the error term is a variable 
that refers to the residual 
portion (part) of a subject i’s 
score on Y after all of the 
effects and the grand mean 
have been subtracted out 

Evidence 
variable 

26. Score (ijk)-GrpM(jk)  Score (ijk)-GrpM(jk) ei(jk)= Yi(jk) -µjk The error 
term is the difference between 
a subject’s score on Y and the 
subject’s cell mean 

Evidence 
variable 

27. Score (ijk)-GM-Effects Score (ijk)-GM-Effects ei(jk)= (Yi(jk) 
-µ)-(αj+βk+(αjβk)). The error 
score can be interpreted as 
that portion of a subject’s 
observed score on the 
dependent variable (expressed 
as a deviation from the 
general mean), which is not 
predictable from the effects of 
the individual’s particular 
combination of Factor A and 
Factor B. 

Evidence 
variable 

28. Additive Combination Additive components (µ+αj+βk+Y(jk) + ei (jk )) The 
score decomposition consists 
of a sum of five components: 
main effect of Factor A, main 
effect of Factor B, interaction 
of A and B, and error. 

Evidence 
Variable 
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Appendix B. Twelve Students’ Scores on 19 Evidence Variables* 

Evidence variable and number S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 

1. Dep Var Y  V  V V V V V V V V V  V  

2. Level j of A V  v V V V V V V V V V   

3. Level k of B V  v V V V  V V V V V  

4. jk Representation  V V V V V V V V  V  

5. Grp (jk) in 2Way Table  V      V V    

6. Equivalence    V V V V V V V V V  V  

7. Grand Mean RLVG   V V V V V V V V V  V  

8. Mean of Group Means  V V     V V    

9. Main Effect Aj V  V V V V V V V V V   

10. Grp Mean(k)-GM V  V V    V V V    

11. Main Effect Bk V  V V V V V V V V V  V  

12. Grp Mean(k)-GM V  V V V V V V V V V   

13. Interaction Effect AB(jk) V  V V V V V V V V    

14. GrpM(jk)-M(j)-M(k)+GM  V V     V V V  V  

15. GrpM(jk)-Eff(j)-Eff(k)-GM  V V     V     

16. Residual Var  V V V V V V V V V   

17. Score(ijk)-GrpM(jk)  V V     V V    

18. Score(ijk)-GM-Effects   V V V V V V V V   

19. Additive Combination V  V V V   V V V    

Total 8 17 18 13 12 11 14 19 18 11 5 5 

* V: the student scores the variable successfully. 
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