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Abstract 

There have been various traditional methods to identify turning points to establish nonlinear relationships. These 

methods use a linear approach (i.e., traditional piecewise regression) to seek a nonlinear relationship. The present 

study aimed to introduce a completely nonlinear approach as an alternative platform to identify turning points. 

This alternative approach was also multilevel to work with data hierarchy for the identification of turning points. 

The United States sample (8776 students from 287 schools) in the 2019 TIMSS (Trends in International 

Mathematics and Science Study) was applied to this alternative approach to identify turning points in the 

relationship between mathematics achievement and mathematics enjoyment with control of student and school 

characteristics. This alternative approach performed well, successfully revealing positive but differential effects on 

mathematics achievement across different degrees of mathematics enjoyment. 

Keywords: completely nonlinear approach, turning points, multilevel, TIMSS 

1. Background 

Statistically, there is a turning point concerning the effects of X (independent variable) on Y (dependent variable) 

when a value of X is identified before and after which the effects of X on Y are statistically significantly different. 

The Merriam-Webster dictionary echoes this notion, calling a turning point as a point at which a significant change 

occurs. Monitoring changes, especially significant ones, is a major task in many fields, demanding the detection of 

turning points. Psychologists, for example, attempt to identify behaviors that emerge at a certain age. Child 

development is all about a significant change in behaviors when children reach a specific age (e.g., Cole, et al., 

2005). For another example, educators who believe in a relationship between study time and academic 

performance search for a threshold study time at which the effects peak on academic performance (e.g., Ma, et al., 

2013). With such a background, we conducted the present study to advance statistical techniques for identifying a 

turning point. We intended to develop an alternative analytical platform to the traditional approaches with several 

clear methodological advantages. 

2. Traditional Piecewise Regression Approach 

There have been various methods in practice to detect turning points. The present study summarized the commonly 

used ones, each with an example of application from the research literature. Visual inspection (the eyeball method) 

is often applied to identify the number of segments as well as the position of turning points (Crawley, 2012). In 

some cases, naked eyes work well to pinpoint turning points between segments. Generally, a scatter plot offers a 

good picture of the relationship, revealing potential turning points. When the pattern of change underlying the data 

is subtle, it is difficult to apply the eyeball method. Hernández-Lloreda, et al. (2004) studied the change in the 

relationship between mothers and infants during different periods of infancy. The eyeball method suggested the 

polynomial degree appropriate to capture the nonlinear relationship in the data, helping formulate research 

hypotheses of the effects. 

In some cases, a turning point has been naturally established that would divide data into regions (the establishment 

method). Life science often contains such cases. Burke, et al. (2008) offered an example of conjugal loss as an 

established turning point for life. Conjugal loss triggers traumatic symptoms to cause a discontinuity of wellbeing. 
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Many time-varying variables have nonlinear relationships with conjugal loss. For instance, depression is mild 

before the loss, escalates at the time of the loss, and gradually decreases after the loss.  

Theories can often provide informative clues on turning points (the theory-driven method). Social science 

examines the relationship between humans and society, with one of the main goals being to identify how the 

relationship changes over time (Elliott, 2014). There are theories that offer important hypotheses about a certain 

relationship. For example, during the development of autonomy in emerging adults, contact with families declines. 

This decline is captured in the theory of separation individuation (Mahler, et al., 1975), with two crucial turning 

points (Sneed, et al., 2006) which can be gender specific. Age 17 represents the high rate of family contact with 

similar levels between men and women, whereas age 27 represents the low rate of family contact with different 

levels between the gender groups. Some empirical studies adopt those theory-driven turning points (e.g., 

Rindskopf & Sneed, 2008). 

When turning points are neither observable by eyes nor identifiable by establishments or theories, exploratory 

work is often pursued (the data-driven method). This method relies heavily on statistical manipulations. For 

example, Li, et al. (2019) indicated that there is a threshold of teaching quality before and after which teaching has 

differential effects on children‟s learning outcomes such as early mathematics, language, and social cognition. 

Without any credible guidance for model specification, they examined multiple values of teaching quality as 

potential turning points, testing slopes before and after each value for statistical significance. 

Statistically, the four methods discussed above apply the same procedure of piecewise regression to detect turning 

points. When a turning point is identified, piecewise regression is statistically very similar to regression 

discontinuity. The logic for the application of piecewise regression for the detection of turning points is obvious. 

Because it is impossible for one linear regression line to capture turning points in the case of a nonlinear 

relationship, linear regression is performed region by region across the values of the independent variable (thus 

piecewise regression). Piecewise regression is the traditional statistical approach, evolved from multiple 

regression, to detect turning points. 

A simple multiple regression model can be used to demonstrate the framework: 

           

Where Y is the dependent variable, X is the independent variable that may contain a potential turning point, and   

is the error term. Meanwhile,    is the intercept and    is the coefficient (slope) of X, indicating the effects of X 

on Y. Suppose a visual inspection indicates a turning point for the effects of X on Y, then X is divided into X1 

(region below the point) and X2 (region above the point). With data split into two segments, the equation can be 

expressed as: 

                 

where    and    are different slopes of X, representing different effects before and after the turning point. 

Although the traditional approach of piecewise regression is simple and popular, it is essentially a linear approach 

to establish a nonlinear relationship. Of course, such an analytical strategy is not inherently inappropriate. Because 

the traditional piecewise regression becomes difficult to handle when there are multiple turning points within X 

(Muggeo, 2008), there is the parsimonious practice of imposing just one or two turning points (to make piecewise 

regression both efficient and effective statistically). As a result, the researchers often get an oversimplified 

nonlinear relationship. 

The traditional piecewise regression may also identify unrealistic turning points. For example, in a Likert type of 

measurement (e.g., 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree), a decimal has no 

measurement meaning, and identifying a decimal as a turning point creates confusion for social policies and 

practices. Finally, as the researchers pursue the identification of turning points in complex data such as data with 

hierarchical structure (e.g., students nested within schools), there is the need to combine multilevel modeling with 

techniques that identify turning points (e.g., Li, et al., 2019; Muggeo, 2008). 

3. A Completely Nonlinear Approach of Multilevel Regression 

The present study attempted to develop an alternative analytical platform for the detection of turning points, with 

two methodological purposes. First, it sought a completely nonlinear approach to establish more “naturally” a 

nonlinear relationship. Second, it brought a multilevel perspective (i.e., hierarchical linear modeling or HLM) into 

the analytical platform to detect turning points in complex data (e.g., students nested within schools). The 
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alternative approach can take the form of a two-level HLM model. The first level focuses on individuals (e.g., 

students), and the second level focuses on institutions (e.g., schools). 

Take the example of a data hierarchy with students nested within schools. A student-level variable of X is 

examined for potential turning points in terms of the effects of X (Xnij precisely) on the dependent variable of Y 

(Yij precisely). The subscription of n in Xnij indicates a Likert type of measurement scale, for example, a five-point 

Likert type of measurement scale (i.e., n = 1, 2, 3, 4, 5 with 1 = strongly disagree, 2 = disagree, 3 = neutral, 4 = 

agree, 5 = strongly agree). What makes the alternative approach completely nonlinear is the use of dummy coding 

to represent each measurement point. Specifically, the student-level model is a set of separate regressions, one for 

each school. It can be expressed as: 

                                              ∑ (   )  (   )    

 

   

    

     {
          (           )
          (           )

  

where     is the value of the dependent variable for student i in school j,      are the dummy variables to indicate 

response points,  (   )   (p = 1, 2, … m) are all the student-level variables to be controlled for at the student level, 

and     is the error term for student i in school j. 

Obviously, in the above equation,     to     are measures of effects at each measurement point of X. The 

school-level model then adjusts     to     for school-level variables: 
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where the r parameters (   ,    ,    ,    ,    ) are adjusted effects of X for school-level variables,     (q = 1, 2, … 

n) are all the school-level variables to be controlled for at the school level, and    ,    ,    ,    ,     are 

school-level error terms. 

Based on the alternative approach, the statistical significance of the coefficients    ,    ,    ,    ,     will 

suggest whether these measurement points, with adjustment over student-level variables and school-level 

variables, are turning points of X on Y. From the above HLM model, there can be three advantages to the 

alternative approach. First, the identification of turning points is determined with adjustment over both 

student-level variables and school-level variables. Second, the alternative approach for determining turning points 

is entirely nonlinear so that there can be “naturally” multiple turning points as long as statistically significant 

changes occur on those points. Finally, turning points are easy to interpret and understand concerning implications 

for social policies and practices because there are no decimal turning points (i.e., each turning point is precisely a 

measurement point). The traditional approach (of piecewise regression) may not possess these advantages. Overall, 
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the alternative approach is simple, systematic, and naturally and completely nonlinear as far as model specification 

is concerned. 

The above HLM model uses the Likert type of measurement scale for the independent variable, indicating a major 

weakness for the alternative approach. There is a possible need to collapse data when the independent variable is 

continuous, which loses some information. This weakness can be improved by setting up an adequate number of 

potential measurement points. For example, if the independent variable is measured on a continuous scale of zero 

to 100 (score points), ten measurement points may be considered (i.e., 0 = 0 – 9, 1 = 10 – 19, 2 = 20 – 29, and so on). 

If collapsing data can be considered a useful way of simplifying data as some studies do to offer a concise 

implication for social policies and practices, then this weakness may not even be much of a weakness. 

Finally, because the alternative approach takes the form of a two-level HLM model, there are no added 

assumptions to those common to any HLM model. Simply put, according to Raudenbush and Bryk (2002), the 

assumptions are that     is NID (normally, independently distributed) with a mean of zero and variance across 

schools; student-level variables are independent of    ; residual school variances (   ,    ,    ,    ,    ) are 

NID; school-level variables are independent of    ,    ,    ,    ,    ; and errors at the student and school levels 

are independent of each other. 

4. Extension 

There are possible analytical extensions of the alternative approach outlined above (i.e., the completely nonlinear 

approach of multilevel regression). The most straightforward is the manipulation of the random effects in the HLM 

model above. Obviously, the above equations of the HLM model indicate that at each measurement point the 

effects of X on Y are assumed to be random at the school level (i.e., with the presence of    ,    ,    ,    ,     

at the school level). This treatment obviously assumes that the effects of X on Y at each measurement point differ 

from school to school (i.e., at the school level). To some researchers, this treatment is quite realistic and may 

capture the nature of school effects. Because schools are different on many fronts, it is reasonable to have different 

schools showing different effects. To other researchers, the effects of X on Y may be considered similar, 

particularly when schools share some common characteristics (e.g., geographic characteristics because of being in 

the same region). 

The alternative approach is flexible in that the error terms at the school level can be either present or absent based 

on certain assumptions on the part of educators and researchers. Statistically, estimating the fixed effects of X on Y 

is easier and the results are more accurate, whereas estimating the random effects of X on Y is more complex and 

the results are more prone to errors. While this decision is a practical and substantive one, the alternative approach 

can easily accommodate both demands. Of course, it is always possible to take a data-driven strategy to test 

whether    ,     ,    ,    ,     are statistically significant or not for the purpose of decision making. 

Nonetheless, it is worth emphasizing that the possibility of treating the effects of X on Y to be random at any given 

measurement point represents another advantage for the alternative approach over the traditional approach (of 

piecewise regression).  

5. Application 

5.1 Data 

Data used for this application was the United States (US) sample in 2019 TIMSS (Trends in International 

Mathematics and Science Study). TIMSS is an international comparison project by the International Association 

for the Evaluation of Education. Since 1995, TIMSS has collected and analyzed data every four years, and 2019 

TIMSS was the latest assessment circle. Sixty-four countries (educational systems) participated in 2019 TIMSS. 

TIMSS collects data from students, teachers, and (school) principals to measure home, classroom, and school 

contexts, with a two-stage (schools and students) random sampling design. For this application, the US national 

representative sample of fourth graders was used (8776 students from 287 schools). The average age in the US 

sample was 10.2 years.  
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5.2 Variables 

For this application, the outcome variable was mathematics achievement of the fourth graders. In TIMSS, the 

content domains include number, measurement and geometry, and data; and the cognitive domains include 

knowing, applying, and reasoning. For fourth graders, the content emphasis is number (including introductory 

algebra or pre-algebra topics), and the cognitive emphasis is knowing (see Mullis & Martin, 2017). To minimize 

testing time, 2019 TIMSS applied matrix sampling to generate plausible values for each student (five plausible 

values of mathematics achievement for each student). Since plausible values cannot be directly used as (traditional) 

test scores, integration of the five plausible values was done to produce a score in mathematics achievement for 

each student. 2019 TIMSS put each plausible value on a measurement scale with a mean of 500 and a standard 

deviation of 100. 

Independent variables were obtained at both student level and school level. Student-level variables included 

student background characteristics as control variables, including gender, age, socioeconomic status (SES) 

(measured by the number of books at home), home language (i.e., whether speak English at home), and 

immigration status (i.e., whether born in the US). The variable of interest, mathematics enjoyment (referred in 

TIMSS to as students like learning mathematics), was also at the student level. Mathematics enjoyment was 

measured with nine items on a four-point Likert type of measurement scale (see Appendix A). Finally, 

mathematics enjoyment was a composite variable constructed from the scale of the nine items by calculating the 

valid average across all items (i.e., calculate the average based on those items of the scale that had valid responses). 

School-level variables were also used as control variables, including school contextual variables and school 

climate variables. Contextual variables included school location (urban, suburban, and rural), school 

socioeconomic composition (measured by shortage of resources in technology, laboratory, and library), and 

school racial-ethnic composition (measured by school proportion of majority students). Climate variables included 

school resources (for mathematics education), academic pressure (i.e., school emphasis on academic success), and 

school disciplinary climate (i.e., school safety). School climate variables were composite variables, and each was 

constructed from a scale of items by calculating the valid average across all items (see Appendix A). These 

student-level and school-level variables are important adjustments when estimating academic achievement (see 

Ma, et al., 2008).  

5.3 Procedures 

As in the routine practice of multilevel modeling, the null HLM model was run first that included only the outcome 

variable (i.e., mathematics achievement). This analysis of the null model and all subsequent analyses were 

executed on the HLM8.0 platform (Raudenbush & Congdon, 2021). The HLM8.0 program has a function to 

integrate plausible values, which was applied in all statistical analyses in this study. The main result from a null 

model is usually the intra-class correlation (ICC) measuring the proportion of variance attributable to the second 

level (i.e., school level in this case). ICC = .27, indicating that a statistically significant amount of variance in 

mathematics achievement did come from schools. The null model also provided information for the upcoming 

calculation of R square (i.e., proportion of variance explained at student and school levels). 

After the null HLM model, the (independent) variable of interest, mathematics enjoyment represented by a number 

of measurement points, was introduced. Because this variable was continuous, it was divided into five equal 

regions based on percentiles (i.e., 20th, 40th, 60th, and 80th percentiles) (see Appendix B). This HLM model with 

measurement points concerning mathematics enjoyment only was then run to generate a pattern of effects of the 

five measurement points for the identification of turning points. Finally, control variables, student characteristics 

at the student level and school characteristics at the school level, were introduced. Descriptive statistics of these 

student-level and school-level variables (used as control variables) are reported in Appendix B. If the previous 

HLM model functioned to demonstrate turning points in an absolute nature (i.e., without the presence of control 

variables), then the final HLM model functioned to demonstrate turning points in a relative nature (i.e., with the 

presence of control variables). 

6. Results 

Table 1 presents the results of the effects of each measurement point after adding the variable of mathematics 

enjoyment to the null HLM model without considering student and school characteristics. Obviously, each 

measurement point was treated to have random effects.  
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Table 1. Results of a Completely Nonlinear Approach of Multilevel Regression for Turning Points Concerning 

Effects of Mathematics Enjoyment on Mathematics Achievement, without Control of Student-Level Variables 

and School-Level Variables 

 Fixed Effects Random Effects 

 Effects SE Variance χ
2
 

Mathematics enjoyment (ME) on mathematics 

achievement 

    

Measurement point: ME = 1 0.13* 0.03 0.19* 796.59 

Measurement point: ME = 2 0.22* 0.04 0.22* 938.66 

Measurement point: ME = 3 0.34* 0.04 0.23* 875.97 

Measurement point: ME = 4 0.57* 0.03 0.21* 907.89 

Measurement point: ME = 5 0.60* 0.03 0.16* 584.92 

Note. * p < 0.05. For χ
2
, df = 231. 

 

All fixed effects were statistically significant and together showed a non-linear, positive, and increasing pattern of 

effects. Specifically, X had an effect of .13 on Y at X = 1; X had an effect of .22 on Y at X = 2; X had an effect 

of .34 on Y at X = 3; X had an effect of .57 on Y at X = 4; and X had an effect of .60 on Y at X = 5. Evidently, a 

turning point stood out at X = 4 (i.e., one positive change pattern occurred across X = 1, 2, and 3; and the other 

positive change pattern occurred across X = 4 and 5). We turned to the idea of an Electrocardiogram or EKG graph 

to illustrate this turning point (this EKG graph is for illustration only and may not be considered correct from the 

perspective of statistical graphing). An EKG graph is an effective way to identify different behavioral patterns. In 

Figure 1, it is evident that there was a jump in effects from X = 3 to X = 4 (i.e., the effects were relatively small 

across X = 1, 2, and 3 but the effects were relatively large across X = 4 and 5). Overall, a turning point was 

identified at X = 4, indicating that from X = 4 onward there were relatively larger effects. 

 

 

Figure 1. An EKG graph showing the trend of effects of mathematics enjoyment on mathematics achievement, 

without control of student characteristics and school characteristics 

 

It was also informative to examine the random effects of the five measurement points (see Table 1). At each 

measurement point, the variance measured how varying the effects were across schools (i.e., the second-level 

units). It appeared that the effects at each measurement point varied statistically significantly across schools. It was 
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worth noting that the identification of the turning point above was done permitting these random effects 

(variances). This cannot be easily done with the traditional approach of identifying turning points. Again, we 

believed that the random effects associated with the measurement points were informative to knowledge. 

We note that the above model was referred to as the absolute model (without control of student-level and 

school-level variables) earlier. Student and school characteristics were then introduced to the absolute model as 

control variables at different levels, resulting in the relative model (with control of student-level and school-level 

variables) (see Table 2).  

 

Table 2. Results of a Completely Nonlinear Approach of Multilevel Regression for Turning Points Concerning 

Effects of Mathematics Enjoyment on Mathematics Achievement, with Control of Student-Level Variables and 

School-Level Variables 

 Fixed Effects Random Effects 

 Effects SE Variance χ
2
 

Mathematics enjoyment (ME) on mathematics 

achievement 

    

Measurement point: ME = 1 0.23* 0.11 0.18* 212.02 

Measurement point: ME = 2 0.30* 0.09 0.17* 218.21 

Measurement point: ME = 3 0.35* 0.10 0.23* 226.22 

Measurement point: ME = 4 0.67* 0.09 0.19* 229.24 

Measurement point: ME = 5 0.66* 0.09 0.19* 198.81 

Note. * p < 0.05. For χ
2
, df = 152. 

 

Both fixed and random effects remained statistically significant even after controlling for student-level and 

school-level variables. Again, allowing effects at each measurement point to vary (i.e., adjusting for random 

effects or variance of effects at each measurement point), a turning point occurred at X = 4, or more precisely the 

turning point identified in the absolute model remained in the relative model. Similar to the case of the absolute 

model, an EKG graph was used to illustrate the different patterns of effects before and after the turning point at X 

= 4 (see Figure 2). 

 

 
Figure 2. An EKG graph showing the trend of effects of mathematics enjoyment on mathematics achievement, 

with control of student characteristics and school characteristics 
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We also carried out what we referred to as comparison of neighborhood effects (on the HLM8.0 platform). This 

comparison aims to test whether the effects are statistically significantly different between two neighboring 

measurement points (e.g., between X = 1 and X = 2). This test is important as part of the evidence for the 

identification of a turning point. Table 3 presents the results of such an examination. For the absolute model 

(without control of student-level and school-level variables), the first three pairs of comparisons were statistically 

significant.  

 

Table 3. Comparison of Effects of Mathematics Enjoyment on Mathematics Achievement between Neighboring 

Measurement Points for Identification of Turning Points, without and with Control of Student-Level Variables and 

School-Level Variables 

 Without Control With Control 

 t SE t SE 

X = 1 vs. X = 2 0.09* 0.02 0.07 0.09 

X = 2 vs. X = 3 0.13* 0.03 0.05 0.09 

X = 3 vs. X = 4 0.22* 0.03 0.32* 0.10 

X = 4 vs. X = 5 0.03 0.03 0.00 0.09 

* p < 0.05. 

 

For example, the effects at X = 2 were statistically significantly different from the effects at X = 1. More 

importantly, the absolute model did indicate that the effects at X = 4 were statistically significantly different from 

the effects at X = 3, thus confirming the turning point at X = 4. Meanwhile, the relative model (with control of 

student-level and school-level variables) was even more revealing in that there was only one pair of comparisons 

statistically significant. This pair precisely identified or confirmed the turning point at X = 4 (i.e., the effects at X = 

4 were statistically significantly different from the effects at X = 3).  

It was quite evident that comparisons of neighborhood effects gave a clear confirmation of X = 4 as the turning 

point. Overall, mathematics enjoyment indicated positive effects on mathematics achievement at every 

measurement point. This is good confirmation that mathematics enjoyment did have positive effects on 

mathematics achievement. However, for the turning point to occur (i.e., for mathematics enjoyment to have strong 

effects on mathematics achievement), it appears that students must enjoy (doing) mathematics very much, implied 

by X = 4 on a measurement scale of 1 to 5. 

Finally, we intended to come up with an assessment on the adequacy of our absolute and relative models. To do so, 

we calculated for each model the proportion of variance explained by the model at each measurement point. We 

note that this proportion does not concern the intercept (the proportion concerning which cannot be calculated 

because of the presence of the random slopes). Precisely speaking, this proportion concerns the (random) slopes 

(i.e., variance in slope associated with a certain measurement point). Table 4 presents the assessment on the 

adequacy of our absolute and relative models. For example, the relative model explained about 66% of the 

variance in slope (i.e., variance in effects) at the measurement point of X = 1. Overall, it was clear that the 

proportion of variance explained was quite adequate across all measurement points in each model (absolute or 

relative). 

 

Table 4. Proportion of Variance Explained at Each Measurement Point 

 Without Control With Control 

Measurement point: X = 1 0.64 0.66 

Measurement point: X = 2 0.59 0.67 

Measurement point: X = 3 0.56 0.57 

Measurement point: X = 4 0.61 0.64 

Measurement point: X = 5 0.70 0.64 
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7. Strengths and Limitations 

7.1 Summary of Strengths 

As an alternative analytical platform to the traditional piecewise regression for detecting turning points, this 

completely non-linear approach of multilevel regression demonstrates several advantages. We have alluded to its 

analytical advantages here and there when we introduced this approach earlier. Here is a summary and some 

extensions. First of all, this approach is multilevel, taking into account data hierarchy (e.g., students nested within 

schools) that can have critical influences on the identification of turning points at the student level. The multilevel 

nature of this approach allows the effects at each measurement point to vary (across schools), which brings 

researchers closer to reality (i.e., real-world condition). Under this approach, turning points can be identified with 

adjustment for variance of effects at each measurement point. Second, comparison of neighborhood effects 

provides confirmatory insights beyond any identification of qualitative nature (e.g., eyeball test). Confirmation is a 

necessary step in the identification of a turning point. Third, this approach can identify multiple turning points 

easily, which may be considered as a substantial advantage over the traditional approach that is not easy as a way to 

identify multiple turning points. In this study, we identified only one turning point because there was only one 

turning point. In the presence of two or more turning points, their identification can be organically or naturally 

done with this approach, and then can be followed with comparison of neighborhood effects for conformation. 

Such an advantage of this approach becomes obvious when there are a large number of measurement points.  

Fourth, this approach can work with both continuous and categorical variables as candidates for turning points. 

This approach is a direct application in the case of a categorical variable. It is not easy for the traditional approach, 

on the other hand, to handle a categorical variable as a potential turning point. Although, in the case of a 

continuous variable, collapsing the continuous variable into categories has its problems, as we argued earlier, there 

are cases in reality where categorical variables are in fact preferred over continuous variables (e.g., for prevention 

of a turning point falling outside the range of legitimate values for a variable). In addition, this approach offers 

flexibility for researchers to define categories from a continuous variable according to their research intentions or 

needs (e.g., the purposeful choice of a certain region as the reference). Fifth, this approach allows covariates to be 

controlled separately at different levels (e.g., at student and school levels) so that the identification of turning 

points can be “refined” with adjustment for confounding effects at different levels. Finally, this approach is quite 

simple for researchers to apply. It is convenient for preparing data (i.e., reducing data management effort), and 

meanwhile, the HLM8.0 software provides an easy but complete way to operationalize this approach (i.e., model 

estimation and comparison of neighborhood effects). 

7.2 Major Limitation and Future Research 

In this approach, a continuous variable must be converted into a categorical variable for identification of turning 

points. As we alluded to earlier, this fact is both positive and negative. The positive side is that researchers can 

simplify a continuous variable by highlighting the most important regions for the examination of effects based on 

their research purposes. Oftentimes, “categorical effects” are not only easier to interpret by researchers but also 

easier to understand by educators, parents, administrators, and policymakers, compared with “continuous effects.” 

The negative side is that there is the loss of information when converting a continuous variable into a categorical 

variable. The fact that a candidate variable for turning points must be a categorical variable in order to apply this 

approach is perhaps the major (inherited) limitation.  

From the model development perspective, this approach is univariate, meaning that it tested only one outcome 

measure or one dependent variable. The multilevel piecewise regression in a multivariate fashion is not yet 

available in the literature. This will be a good contribution of the current approach in the future. Multilevel, 

multivariate piecewise regression will be a natural extension of the current approach, having the ability to test, for 

example, two school subjects (e.g., mathematics and science) simultaneously for similarities and differences in 

terms of turning points of the effects of enjoyment on achievement between the two school subjects. 
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Appendix A. Description of Composite Variables 

Mathematics Enjoyment (A Student-Level Variable) 

How much do you agree with the statements about learning mathematics? (a) I enjoy learning mathematics. (b) I 

wish I did not have to study mathematics. (c) Mathematics is boring. (d) I learn many interesting things in 

mathematics. (e) I like mathematics. (f) I like any schoolwork that involves numbers. (g) I like to solve 

mathematics problems. (h) I look forward to mathematics lessons. (i) Mathematics is one of my favorite subjects. 

(Response: very much, somewhat, not much) (Reliability = .93) 

School Resources (A School-Level Variable) 

To what extent is mathematics instruction affected by shortage of following resources? (a) Teachers with a 

specialization in mathematics. (b) Computer software/applications for mathematics instruction. (c) Library 

resources relevant to mathematics instruction. (d) Calculators for mathematics instruction. (e) Concrete objects 

or materials to help students understand quantities or procedures. (Response: not affected, somewhat affected, 

affected a lot) (Reliability = .93) 

Academic Pressure (A School-Level Variable) 

How would you characterize each of the following within your school? (a) Teachers‟ understanding of the 

school‟s curricular goals. (b) Teachers‟ degree of success in implementing the school‟s curriculum. (c) Teachers‟ 

expectations for student achievement. (d) Teachers‟ ability to inspire students. (e) Parental involvement in school 

activities. (f) Parental commitment to ensure that students are ready to learn. (g) Parental expectations for student 

achievement. (h) Parental support for student achievement. (i) Students‟ desire to do well in school. (j) Students‟ 

ability to reach school‟s academic goals. (k) Students‟ respect for classmates who excel academically. 

(Response: very high emphasis, high emphasis, medium emphasis) (Reliability = .92) 

School Disciplinary Climate (A School-Level Variable) 

To what degree is each of the following a problem among (fourth grade) students in your school? (a) Arriving 

late to school. (b) Absenteeism (i.e., unjustified absences). (c) Classroom disturbance. (d) Cheating. (e) 

Profanity. (f) Vandalism. (g) Theft. (h) Intimidation or verbal abuse among students (including texting, emailing, 

etc.). (i) Physical fights among students. (j) Intimidation or verbal abuse of teachers or staff (including texting, 

emailing, etc.) (Response: hardly any problems, minor problems, moderate to severe problems) (Reliability 

= .89) 
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Appendix B. Descriptive Statistics of Student-Level and School-Level Variables 

Variables Mean SD 

Student-level variables   

Mathematics enjoyment (divided into measurement points) 9.68 2.18 

0 to 20th percentile (3.85 to 7.98) 6.75 1.23 

20 to 40th percentile (7.98 to 8.96) 8.57 0.28 

40 to 60th percentile (8.96 to 9.97) 9.53 0.30 

60 to 80th percentile (9.98 to 11.74) 10.97 0.56 

80 to 100th percentile (11.76 to 13.14) 13.13 0.08 

Gender (male = 0, female = 1) 0.49 0.01 

Age (continuous) 10.25 0.43 

Socioeconomic status (SES)   

Less books at home (vs. median number of books at home) 0.42 0.49 

More books at home (vs. median number of books at home) 0.26 0.44 

Home language (English = 1, others = 0) 0.64 0.48 

Immigration status (yes = 1, no = 0) 0.93 0.27 

School-level variables   

School location   

Urban (vs. rural) 0.19 0.39 

Suburban (vs. rural) 0.51 0.50 

School socioeconomic composition    

(Disadvantaged proportion: > 50% = 1, ≤ 50% = 0) 0.61 0.49 

School racial-ethnic composition   

(Majority proportion: > 50% = 1, ≤ 50% = 0) 0.79 0.41 

School resources (for mathematics education) 11.38 2.35 

Academic pressure 10.05 2.38 

School disciplinary climate 9.85 1.47 

Note. For dummy variables, a mean indicates the proportion of cases coded as 1. 
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