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Abstract  

The Primary Math Assessment (PMA) tool is increasingly being used in multiple districts in a northwestern state.  
The PMA provides both screening and diagnostic information in six domains to assess mathematical proficiency 
in young students in their early educational years. A previous study using multidimensional Rasch analyses 
found support for the PMA’s six-dimensional theoretical framework, and that the PMA is a reliable mathematics 
assessment for early grades. This study extended the examination of a Rasch model, implementing exploratory 
and confirmatory factor analysis, Item Response Theory, and Differential Item Functioning analyses. In doing so, 
this study found an IRT 2-PL model to fit best with these data and provided ways to improve the accuracy of 
measuring mathematical proficiency in early grades.   

Keywords: exploratory factor analysis, confirmatory factor analysis, Item Response Theory, Differential Item 
Functioning, math proficiency assessment 

1. Introduction 

1.1 Need for Early Math Assessment 

National and international mathematics assessments of fourth grade (9-year-old) students point to the need for 
better mathematics preparation for our youngest students (Clements & Sarama, 2007; Gersten, Beckman, 
Clarkem Foegen, Marsh, Star, & Witzel, 2009; Gersten, Clarke, Dimino, & Rolfus, 2011; NRC, 2009; Reese, 
Miller, Mazzeo, & Dossey, 1997). Rising first-graders who have not learned basic math concepts and skills will 
experience problems in elementary school (ages 6 through 14) that can carry through to high school (ages 14 
through 18) (Duncan, Dowsett, Claessens, Magnuson, Huston, Klebanov, & Brooks-Gunn, 2007; Jordan, Kaplan, 
Ramineni, & Locuniak, 2009; Morgan, Farkas, & Wu, 2009). Nevertheless, enduring improvement can be 
achieved through early intervention (Jordan & Levine, 2009; LeFevre, Fast, Skwarchuk, Smith-Chant, Bisanz, 
Kamawar, & Penner-Wilger, 2010). Of great importance, then, are valid, reliable, and efficient assessment 
instruments (i.e., screeners) that can identify these young students who are experiencing problems with 
mathematics and mathematical thinking, followed by assessments that can diagnose in which subdomains they 
experience their problems.   

The Common Core Standards in Mathematics in the United States are descriptions of the mathematical skills that 
students should have at each year of education—a general framework of expectations that instructors use when 
drafting their teaching plans. These include standards in numbers and operations, along with algebraic thinking, 
measurement, data analysis, and geometry. However, most current educational screening tools assess only 
number sense, to the exclusion of other critical mathematical areas, for students in their early years of education.  
Teachers rely on available screening instruments, despite that the content of the screener is misaligned with the 
Common Core Standards. Further, dated definitions of mathematics disability have caused disability assessment 
tools to focus on numerical quantity and number sense, which is again misaligned with current research 
suggesting that mathematics disability also includes symbolic processing and visual-spatial impairment 
(Rousselle & Noel, 2007), a deficit in working memory (Geary, 2004; Swanson, Howard & Saez, 2006), and a 
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hybrid of other deficiencies (Ashkenazi, Black, Abrams, Hoeft, & Menon, 2013). For these reasons, it is crucial 
that assessment and diagnostic instruments encompass the variety of mathematical problem subtypes, along with 
the content of the Common Core Standards for U.S. students. 

1.2 Primary Mathematics Assessment Tool 

To address the limitations of many of the current instruments, the Primary Mathematics Assessment (PMA) 
(Brendefur & Strother, 2010) has been developed to identify students in U.S. grades kindergarten through second 
grade (student ages five through eight) who are at risk for poor outcomes in six mathematics dimensions.  
Initially, students are assessed with the PMA-Screener (PMA-S), and students who identify as at risk are then 
assessed with the PMA-Diagnostic (PMA-D). These sequential, “multi-gate” assessments can first quickly assess 
many students, and then confirm initial screening findings for the small group of at-risk students, providing a 
comprehensive evaluation of the six dimensions of mathematical proficiency/deficiency. These results can be 
translated into targeted interventions, resulting in a more efficient use of time and the likelihood of improved 
proficiency for the at-risk students. 

The PMA was developed to measure six predictive dimensions of future math achievement: number sequencing, 
operations (number facts), contextual problems, relational thinking, measurement, and spatial reasoning. A more 
thorough review of the development and success of the PMA is presented elsewhere (see Brendefur et al., 2015; 
Brendefur, Strother, & Thiede, 2012). 

2. Purpose 

Like many assessment instruments, the PMA was subjected to an initial validation that utilized a Rasch model, 
which can examine items’ difficulty. However, the PMA is now in the stage of development that requires a more 
in-depth validation with a large population of students. To accomplish this, we conducted a multiple-stage 
validation, beginning with an examination of the 1) conceptual framework, 2) structural validity using factor 
analysis, and 3) model fit by student grade using confirmatory factor analysis. We followed this with a 4) 
comprehensive evaluation of each item using Item Response Theory (IRT) and a 5) determination of the 
appropriate IRT nested model. Finally, we calculated Cronbach’s alpha to 6) determine the instrument’s 
reliability, examination of R2 and utilized Differential Item Functioning (DIF), to 7) determine whether any items 
were biased against different groups and ANOVA from Classical Test Theory (CTT) and to 8) investigate 
whether the instrument as a whole was biased against any student groups. 

3. Methods 

In the winter of 2016, 33 schools from four districts in a Northwestern state used the PMA. Within these four 
districts, 1530 kindergarten students, 1553 first grade students, and 1558 second grade students took the 
PMA-Screening (PMA-S) test. Data from all 4641 completed PMA-S tests and demographic data on the 
participating students were used in this study. Prior to the analysis, the data were cleaned and reviewed for 
missingness and for potential invalid values due to data entry errors. Sex and school names were recoded to 
facilitate statistical analyses and numbers of correct answers were calculated to provide a test score for each 
student.  

3.1 Part 1  

We implemented a two-part approach to study PMA-S reliability and validity. Part 1 examined the conceptual 
framework from which the PMA-S was developed and how well the items performed within the measurement 
model. The first step in Part 1 was a test of the validity of the six-dimension PMA-S framework by conducting a 
factor analysis. The current implementation of the PMA-S uses 18 test items on six dimensions (i.e., latent 
constructs) identified as number sequencing (ns), operations/number facts (nf), contextual problems (cntxt), 
relational thinking (rt), measurement (meas), and spatial reasoning (spa). See Figure 1 for the conceptual 
framework.  
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Figure 1. PMA-S conceptual framework 

 

Mplus 7.4 (Muthen & Muthen, 2015) was used to conduct an Exploratory Factor Analysis (EFA) on 18 
dichotomous variables (see Appendix A for Mplus script). The 18 variables represent the 18 PMA questions 
dichotomously scored 1 (correct) or 0 (incorrect). We selected WLSMV for our estimator setting. Mplus defines 
WLSMV as “weighted least square parameter estimates using a diagonal weight matrix with standard error and 
mean- and variance- adjusted chi-square test statistic that uses a full weight matrix” (p. 533) and is the default 
estimator for an EFA using Mplus. For the rotation, we implemented Geomin oblique to review PMA-S 
dimensionality for each of three grades (kindergarten, first grade, and second grade) individually and then 
together. Geomin was selected because of the theoretical support that the six dimensions are correlated and 
because “Geomin rotation is recommended when factor indicators have substantial loadings on more than one 
factor resulting in a variable complexity greater than one” (Muthen & Muthen, 2015, p. 537). Following the EFA, 
we conducted a Confirmatory Factor Analysis (CFA) for each of the three grades separately, with the three 
grades combined, and with covariates. Testing of multiple CFA models was necessary to explore model 
performance fully among the grades and when covariates were included. 

The next step in Part 1 included a comprehensive item examination using Item Response Theory (IRT) using 
Mplus 7.4. The National Council on Measurement in Education website glossary describes IRT as, “A theory of 
testing based on the relationship between individuals’ performances on a test item and the test takers’ levels of 
performance on an overall measure of the ability that item was designed to measure” (NCME, 2017). Again, we 
selected WLSMV as our estimator for consistency and because of the nested model (i.e., restricting one estimate 
of the model compared with the same model with no restriction) testing capability. The testing of nested models 
helped identify which of the IRT models is appropriate for PMA data modeling—1PL-Rasch for examining 
difficulty; 2PL for examining difficulty and discrimination; and 3PL for examining difficulty, discrimination, and 
guessing. Examination of the parameter estimates for IRT indicated how well each item fits within the 
appropriate IRT model, and showed the performance of each test item for assessing student mathematical 
proficiency. Both the testing of nested models and examining parameter estimates contributed to a final selection 
as to which IRT model is most appropriate for the PMA-S and which of the 18 items were not as effective in 
assessing mathematical proficiency. 

3.2 Part 2 

In Part 2 we examined the reliability and validity of the PMA-S using SPSS 22 to explore descriptive data for the 
various student groups. Whereas Part 1 focused on the conceptual framework, Part 2 focused on the respondents 
and how well items measured mathematical proficiency without bias. The first step in Part 2 of our analysis 
investigated potential unexplained performance differences among groups of students based simply on the 
number of correct answers. For example, if a low performing district scored significantly higher on the PMA-S 
when compared to a higher performing district, we would use this discovery to examine the two groups. Other 
variables used to group students included sex, ethnicity, teacher, and grade. We used One-way ANOVA to 
investigate potential group differences, along with comparing descriptive information and graphs representing 
group scores. Using these simple review procedures allows for a more comprehensive examination of PMA-S’s 
reliability and validity.    

The second step of Part 2 closely examined each PMA-S item for the possibility of having Differential Item 
Functioning (DIF) characteristics. PMA-S items with DIF are biased in their ability to fairly assess mathematical 
proficiency between groups. For example, if wording on a PMA-S test item places a Hispanic student at a 
disadvantage, then the item is considered inappropriate and unable to measure mathematical proficiency 
effectively. Using an item that is biased has the potential to deprive a student of an equal educational opportunity 
due to a test score that does not represent their true mathematical proficiency (e.g., teacher intervenes with an 
inappropriate lesson mismatched with the students’ capabilities). In addition, we used DIF detection to verify the 
earlier discoveries of group differences to determine whether these differences were problematic for PMA-S or 
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simply true variations in student proficiencies. 

4. Findings 

Our examination of the data discovered no missingness with regards to the 18 PMA-S items or sex. However, 
substantial missingness was found for the variable identifying English language learners (ELL) that removed our 
opportunity to include ELL in the study. Overall, we found no values that were identified as invalid, but we did 
see some departure from normality for the number of correct answers, which is discussed later. Next, we 
calculated descriptive statistics for our sample of participating students. See Table 1 for details. 

 

Table 1. Study demographics for participating students 

 Kindergarten First Grade Second Grade 

Participants 1530 (707 female, 
818 male, 5 other) 

1553 (772 female, 
777 male, 4 other) 

1558 (765 female, 
783 male, 10 other) 

Schools represented 32 29 30 

Ethnicity:                          

not marked-0 132 83 88 

American Native-1 11 12 14 

Asian-2 47 48 77 

Black/African American -3 39 41 53 

Native Hawaiian/Pacific Islander -4 8 10 9 

White not Hispanic -5 1074 1130 1078 

Latino -6 148 157 180 

Two or more races-7 71 72 59 

ELL-LEP 5 10 5 

IEP 64 98 116 

 

4.1 EFA Findings 

EFA was conducted on kindergarten (grade 0), grade 1, and grade 2 separately, and on a dataset with the grades 
combined. Our primary focus for the EFA was to explore the best number of dimensions to model the PMA-S 
items by only following the item loadings on the dimensions, and not to use EFA to explore which items should 
or should not be in the model. Therefore, fit indices and chi-square change significance were recorded for each 
possible number of dimensions from 1 to 8 (i.e., number of factors in the model). All recorded fit indices showed 
well-fitting models with Root Mean Square Error of Approximation (RMSEA) ranging in values from .047 to 
0.00, using the good fit threshold of < .05. The Standardized Root Mean Square Residual (SRMR) also uses the 
< .05 threshold, and our data revealed ranges from .058 to .008, indicating well fitted models. The Comparative 
Fit Index (CFI) and Tucker Lewis Index (TLI) indices fit well when > .9, and we discovered CFI and TLI ranges 
from .941 to 1, so all models met this criterion. For grades 0 and 1, chi-square values were significant until 
models with at least six factors were reached, suggesting that the models with fewer than six dimensions did not 
match the data well. Chi-square non-significance for grade 2 data was reached with only four factors, but when 
all three grades were combined, non-significance was reached at seven factors. Therefore, with strong fit indices 
for all three grades and a marginal difference in grade 2 for reaching non-significance, the conceptual framework 
with six dimensions is supported initially by our EFA analyses. 

Comparing factor correlations for six factor models among the three grades also show differences. All grade 0 
(i.e., kindergarten) factor correlations were found to be significant at p < .05 and ranged in value from 0.128 to 
0.742. Grade 1 factor correlations found 10 of the 15 factor correlations to be significant, ranging from -0.143 
to .727. Grade 2 factor correlations were recognizably different from grades 0 and 1. Only three of the 
correlations were significant at p < .05, ranging from 0.036 to 0.782. The patterns of the factor correlations 
shown in Table 2 and Table 3 below are echoed in the factor structures of the three grades.   
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Table 2. Factor structure for Grade 0 and 1 

Factor Structure—Grade 0 Factor Structure—Grade 1 

1 2 3 4 5 6 1 2 3 4 5 6 

ns08 0.839 0.623 0.338 0.334 0.385 0.325 0.739 0.377 0.491 0.547 0.322 0.376 

ns12 0.631 0.492 0.346 0.286 0.311 0.324 0.718 0.431 0.511 0.506 0.243 0.170 

ns18 0.685 0.579 0.244 0.419 0.379 0.410 0.708 0.094 0.543 0.594 0.245 0.312 

ns19 0.432 0.460 1.128 0.240 0.170 0.179 0.788 0.110 0.609 0.661 0.409 0.259 

nf08_33 0.716 0.673 0.268 0.423 0.473 0.381 0.685 0.232 0.718 0.753 0.383 0.220 

nf13_38 0.566 0.747 0.265 0.283 0.364 0.324 0.587 0.057 0.858 0.501 0.322 0.186 

nf20 0.667 0.674 0.310 0.306 0.379 0.271 0.618 -0.070 0.680 0.610 0.330 0.294 

rt12 0.429 0.505 0.237 0.866 0.346 0.361 0.525 -0.230 0.340 0.340 0.490 0.233 

rt18 0.513 0.777 0.313 0.412 0.391 0.354 0.583 -0.210 0.450 0.460 0.360 0.199 

rt23 0.458 0.495 0.125 0.409 0.310 0.373 0.762 -0.020 0.540 0.570 0.530 0.146 

cntxt03 0.575 0.697 0.225 0.433 0.379 0.400 0.503 0.019 0.395 0.700 0.309 0.140 

cntxt07 0.567 0.718 0.327 0.399 0.348 0.411 0.641 -0.020 0.510 0.690 0.350 0.252 

means01 0.254 0.294 0.047 0.319 0.238 0.677 0.423 -0.030 0.320 0.410 0.590 0.167 

means02 0.382 0.418 0.203 0.204 0.298 0.651 0.406 -0.020 0.360 0.340 0.510 0.216 

means11 0.320 0.432 0.211 0.294 0.305 0.306 0.210 0.193 0.170 0.158 0.323 0.163 

spa10 0.392 0.417 0.136 0.286 0.772 0.249 0.452 -0.080 0.410 0.430 0.630 0.402 

spa13 0.408 0.422 0.094 0.294 0.850 0.355 0.140 -0.230 0.080 0.160 0.250 0.069 

spa30 0.287 0.256 0.016 0.210 0.274 0.213 0.254 -0.030 0.190 0.180 0.230 0.655 

 

Table 3. Factor structure for Grade 3 

1 2 3 4 5 6 

ns08 0.101 0.812 0.667 0.480 0.094 0.182 

ns12 0.121 0.895 0.700 0.467 0.178 -0.061 

ns18 0.104 0.725 0.505 0.325 -0.170 0.082 

ns19 0.109 0.794 0.701 0.473 0.263 0.159 

nf08_33 0.082 0.511 0.662 0.254 0.196 0.171 

nf13_38 0.117 0.668 0.834 0.418 0.242 0.149 

nf20 0.103 0.605 0.759 0.434 0.282 -0.007 

rt12 4.162 0.598 0.541 0.357 0.279 0.149 

rt18 0.131 0.731 0.612 0.326 0.338 0.226 

rt23 0.129 0.711 0.627 0.450 0.637 0.189 

cntxt03 0.093 0.503 0.582 0.497 0.234 0.181 

cntxt07 0.092 0.507 0.503 0.900 0.231 0.175 

means01 0.077 0.381 0.307 0.221 0.084 0.272 

means02 0.073 0.373 0.382 0.277 0.239 0.325 

means11 0.030 0.254 0.211 0.168 0.010 0.270 

spa10 0.026 0.182 0.219 0.212 0.255 0.422 

spa13 0.032 0.139 0.239 0.196 0.034 0.265 

spa30 0.036 0.260 0.203 0.136 0.144 0.445 
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Within Tables 2 and 3, bold and underlined ones identify largest loading values, while italics and underline 
identify second largest loading value within each grade. We focused on the factor structures for the three grades 
because we used oblique rotations. Tables 2 and 3 show that the identification of each factor (i.e., 1 through 6) is 
not the same for the three analyses (i.e., grade 0, 1, and 2), but the corresponding factors for each of the three 
grade analyses can be identified easily by the item loadings. Double loading was evident in many of the items. 
Double loading is when the largest factor loading for an item is not more than double in value from its other 
factor loadings. For example, item ns19 from grade 0 has a loading value of .460 with a second largest loading 
value of .432, and shows double loading for Grade 2 as well. This example and the other double loadings in 
Tables 2 and 3 indicate the degree to which the dimensions are correlated and how these items are measuring 
only slightly different concepts within the overall construct of mathematical proficiency. However, the presence 
of double loadings is an issue when developing a highly effective tool for measuring mathematical proficiency. 
In addition to individual items double loading on factors, some of the conceptualized groups of items do not 
always load on the same factor. This is especially evident for the three items for measurement (means01, 
means02, and means11) and for grade 2 in which no factor loadings indicate a single dimension. For all three 
grades combined, the loadings do not vary as much (see Table 4) but occurrences of double loadings persist. 

 

Table 4. EFA factor loadings for grades combined 

 1 2 3 4 5 6 

ns08 0.933 0.623 0.509 0.526 0.469 0.318 

ns12 0.611 0.599 0.749 0.543 0.258 0.237 

ns18 0.632 0.602 0.626 0.568 0.335 0.346 

ns19 0.591 0.644 0.648 0.534 0.446 0.206 

nf08_33 0.615 0.737 0.519 0.611 0.391 0.379 

nf13_38 0.528 0.750 0.529 0.588 0.409 0.292 

nf20 0.564 0.826 0.574 0.580 0.321 0.333 

rt12 0.438 0.465 0.315 0.381 0.537 0.298 

rt18 0.486 0.662 0.743 0.478 0.277 0.461 

rt23 0.321 0.335 0.247 0.482 0.499 0.033 

cntxt03 0.453 0.545 0.396 0.694 0.364 0.257 

cntxt07 0.463 0.540 0.491 0.725 0.409 0.219 

means01 0.258 0.237 0.151 0.307 0.591 0.180 

means02 0.311 0.294 0.182 0.363 0.540 0.197 

means11 0.298 0.298 0.383 0.246 0.213 0.335 

spa10 0.396 0.440 0.246 0.338 0.422 0.543 

spa13 0.257 0.345 0.294 0.318 0.162 0.579 

spa30 0.260 0.194 0.228 0.249 0.217 0.307 

 

Within Table 4, bold and underlined ones identify largest loading values, while italics and underline identify 
second largest loading value. 

The lack of clear loadings for the 18 items on six dimensions (i.e., factors) is problematic. However, fit indices 
and the frequency in which conceptualized items for each dimension load on the same factor when comparing 
among grades and when grades are combined offered some support for the initial PMA framework. Some of the 
items within a conceptualized dimension show that they do measure the construct effectively, while other items 
are not as focused on a single dimension.   

4.2 CFA Findings 

Given the variations in item performance in the EFA analyses, we conducted a CFA to gain additional insight 
into the overall structural validity of the PMA-S. Figure 2 shows the estimated relationships among the 18 items 
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and six latent constructs when all three grades are combined. 

  

Figure 2. CFA with all three grades combined 

 

For Figure 2, R2 for ns, nf, cntxt, means, and spa are .879, .875, .748, .677 and .551 respectively. R2 for rt was 
undefined in this model. Fit indices for this CFA model show a well-fitting model to the data prior to adding any 
error correlations or covariates (RMSEA = 0.035, CFI = 0.976, and TLI = 0.971). Standard errors in the model 
were found to be relatively small and five of the six R2 values, representing reliability for the six latent 
constructs, show much of the variance within the constructs as being captured by their associated variables (R2 
represents the amount of measurement variation captured by the model). However, R2 for spatial reasoning (spa) 
and measurement (means) are smaller than guidelines for well measured constructs (0.551 and 0.677, 
respectively). 

Next covariates were added to the CFA model to investigate potential influences on specific items. After 
including students’ grade year as a covariate for the overall latent construct of mathematical proficiency, we used 
Mplus’s modification indices (MI) to select which of the 18 items should have a direct effect from grade, 
stopping when no other significant MIs exist. Adding one direct effect at a time, followed by rerunning the 
model, fit indices were incrementally improving even though each model, from the start, shows indices for a 
well-fitting model. When the suggestions ended, only five of the 18 remained unlinked (ns12, ns19, nf08_33, 
nf13_38, and spa30).  

We used the same procedure to investigate the covariate sex. Sex was defined as 1 = female, 2 = male, and 3 = 
other (only 19 out of 4641 identified as other). We removed grade and added sex to the model without any direct 
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effects to any of the 18 items. The model with sex as a covariate resulted in a better fitting model than when 
grade was added, and only six of the 18 show possible significant model improvement for the MI. Unlike 
influence from grade, at the time MI stopped showing any suggested direct effects, 13 of the 18 remained 
unlinked (ns12, ns18, nf08_33, nf13_38, nf20, rt12, rt23, cntxt03, cntxt07, means11, spa10, spa13, and spa30).  
If adding a covariate improves model fit, then the items in the model are measuring more than their 
conceptualized construct. Linking the covariate to specific items is one way to identify which of the items are at 
fault within the model. The fact that the model improved for more links with grade than sex reveals that grade is 
more problematic to item effectiveness than sex.  

4.3 Individual Item Performance 

Following the review of the structural foundation of the PMA-S, we turned our attention to the measurement 
qualities of each individual item. IRT was used on each grade individually to find which of the 1-PL, 2-PL, or 
3-PL models fit the data best. Given the nested nature of the models, we started with the 1-PL (i.e., Rasch) and 
used DIFFTEST option within Mplus (Mplus FAQ, 2017) to check for significant improvement within nested 
models. In addition, parameter estimates and graphs were used to examine how each model performed. Results 
from the DIFFTEST for each grade individually and grades combined found significant chi-square change 
differences going from the 1-PL to the less restricted 2-PL model, indicating that the 2-PL is a much better model 
for the data than 1-PL.   

The slope in an Item Characteristic Curve (ICC) is the measure of discrimination for a single item. The 1-PL 
model (i.e., Rasch model) holds all slopes equal where the less restrictive model (i.e., 2-PL model) allows slopes 
to vary among items. A 2-PL model will be a better fit for the data when estimated item slopes vary. Figure 3 
shows ICCs for 1-PL and 2-PL models that clearly show differences in slopes.   

 

Figure 3. Comparison of ICCs for 1-PL and 2-PL models 

 

With significant chi-square change differences and the visual confirmation from Figure 3, a 2-PL model is a 
better match than the 1-PL Rasch model for the PMA-S. 

A different set of criteria had to be used when choosing between 2-PL and 3-PL models. DIFFTEST in Mplus is 
available only for three different estimators, Mean and Variance Adjusted (MLMV), Robust Weighted Least 
Squares (WLSMV), and Robust Unweighted Least Squares (ULSMV). However, 3-PL model parameters with 
dichotomous outcome variables cannot be estimated using any of these three. In addition, Maximum Likelihood 
Robust (MLR) is the default estimator for 3-PL modeling in Mplus, and parameter estimates from WLSMV and 
MLR are similar but vary somewhat, making estimate comparisons more subjective. Given this, we looked 
closely at the “guessing” parameter values from the 3-PL analysis using MLR estimation to determine potential 
differences between 2-PL and 3-PL model fit. We discovered that only three of the 72 guessing estimates (i.e., 18 
items in three grade datasets and one combined dataset) had significant guessing parameters. The three 
occurrences were spa13 for grade 0, means01 for grade 1, and ns19 for the combined dataset. Adding the 
three-significant guessing 3-PL estimates to the discriminate and difficulty 2-PL estimates suggested that the 
3-PL did not rise to the level of being a better model selection than the 2-PL model. If more guessing parameters 
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had been significantly larger than zero, making the selection between 2-PL and 3-PL more challenging, we 
would have conducted other model comparison tests (e.g., Wald test). 

After our examination of model differences clearly selected the 2-PL model, we turned our attention to 
examining assessment differences among potential PMA-S student groups using classical test theory (CTT).  
CTT focuses more on the number of correct answers by test takers that translate typically into test scores. The 
distributions of test scores for the three grades of students show reasonable means and standard deviations, but 
they are recognizably different (see Figure 4).  

  

Grade Histogram Descriptives 

 

Grade K 

 

 

 

Mean = 8.17 

Std. Dev = 4.144 

N = 1530 

Second Grade Mean = 11.94 

Std. Dev. = 3.662 

N = 1558 

Figure 4. Distribution of number correct scores by grade 

 

The Kolmogorov-Smimov test for normality rejects all three distributions as being similar to a normal 
distribution. However, a significant departure from normality is not on its own problematic, and the changes in 
distribution shape from kindergarten to second grade make theoretical sense due to expected increased 
mathematical proficiency over time. A One-way ANOVA rejects at α = .05 equal means for all three grades, 
which added to the evidence that students at different grade levels perform differently.   

4.4 Item Bias 

Turning our attention to potential assessment differences by sex, mean test scores for females across the three 
grades were 7.74, 10.03, and 11.73, for males mean test scores were 8.55, 11.00, 12.14, and mean scores for 
other sex were 6.60, 7.25, and 11.20 for grades 0 through 2 respectively. A One-way ANOVA found female and 
male scores to be significantly different at α = .05 for grades 0 and 1, but not significant for grade 2. However, 
statistical significance alone is insufficient in determining differences. The large sample size can contribute to 
statistically significant differences between males and females, yet in our sample the other sex category did not 
have enough power to reach statistical significance. Practically, the mean differences between males and females 
were less than one correct answer apart, which does not support a finding of practically important difference.  
This illustrates why CTT is not the preferred approach to understanding assessment bias. IRT and DIF analyses 
provide more insight into which items on a test are placing a particular group at a disadvantage. 

An approach commonly used to detect DIF items is the Mantel-Haenszel (Mantel & Haenszel, 1959).  
Mantel-Haenszel tests each item, identifying which items on an assessment reject the possibility that no DIF 
characteristics are present. However, because our dataset is large (i.e., high statistical power), we were concerned 
that too many false positives would appear. Using a ranking approach, placing items in the order of potential DIF, 
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offered a more hands-on approach in identifying biased items allowed us to compare items while considering 
their theoretical contribution to assessing mathematical proficiency. We used one such ranking approach, the 
Area Method proposed by Raju (Raju, 1988), to explore for DIF characteristics in the PMA-S items. The Area 
Method uses the amount of area found between ICCs from two separate groups to identify the potential level of 
DIF present. Because the calculated area represents the potential amount of DIF, items can be sorted by their 
calculated area values and then reviewed. We executed the Area Method following a 2-PL model on the PMA-S 
items to explore possible sex and grade bias by looking at each sex/grade combination against all others. 
Grouping sex and grade provided a better understanding of who exactly was experiencing the most bias, and 
which items in the PMA-S are most problematic. 

 

Table 5. Potential DIF items using area method 

Group 
number sequencing number facts relational thinking 

ns08 ns12 ns18 ns19 nf08_33 nf13_38 nf20 rt12 rt18 rt23 

G0 female 0.039 0.455 0.483 1.267 0.023 0.288 0.435 0.740 1.261 1.806 

G1 female 0.747 0.268 0.188 0.274 0.181 0.292 0.360 1.100 0.799 1.602 

G2 female 0.422 1.024 0.319 0.327 0.854 0.085 0.343 0.681 0.462 1.108 

G0 male 0.588 0.172 0.134 0.721 0.175 0.055 0.568 0.560 1.897 1.911 

G1 male 0.480 0.293 0.280 0.293 0.266 0.302 0.067 1.280 0.697 2.094 

G2 male 0.330 0.795 0.495 0.421 0.212 0.256 0.242 1.078 0.345 1.259 

Group 
contextual problems measurement spatial reasoning 

cntxt03 cntxt07 means01 means02 means11 spa10 spa13 spa30 

G0 female 0.494 0.310 1.728 1.021 1.128 0.391 2.136 0.741 

G1 female 0.047 0.418 1.073 0.348 1.428 0.129 2.497 0.273 

G2 female 0.396 0.402 0.030 0.230 1.116 1.597 2.043 0.587 

G0 male 0.289 0.373 1.316 1.172 1.365 0.517 2.706 0.064 

G1 male 0.322 0.429 1.616 0.563 1.175 0.365 2.073 0.919 

G2 male 0.589 0.463 0.697 0.299 0.812 1.972 1.058 0.659 

 

Table 5 shows calculated Area values for different groups of students according to their sex and grade. For Table 
5, bold and italics identify numbers larger than one, and underlined was added to numbers larger than two. Each 
row in the table represents one DIF analysis using the Area Method that allows for a comparison of potential DIF 
by item (18 columns representing the 18 items in the PMA-S). In addition, to help the comparison of items, we 
bolded the Area values larger than one, and for values larger than two we added an underline. A comparison 
reveals that item one of the items measuring spatial reasoning (spa13) is showing signs of bias (i.e., signs of 
large DIF characteristics). Three other items in two different dimensions are showing signs of bias, one in 
relational thinking (rt23) and two in measurement (meas01 and meas11). Six items show minimal signs of DIF 
characteristics, but with the earlier presented findings these signs may be related more to grade bias rather than 
male/female differences. 

5. Conclusion 

EFA and CFA both provide support for the conceptual framework. The model was well fit to six dimensions, 
which we believe would be even stronger if the three items found to have DIF characteristics were replaced with 
less biased items. In addition, IRT’s 2-PL model was most appropriate for modeling mathematical proficiency, 
primarily due to its varying discrimination capabilities for items that are not recognized with a more conservative 
Rasch model. 

DIF analyses do show that PMA-S has some bias based on grade level and sex. Assessing measurement aptitude 
in students will be much improved if further review of measurement items were conducted. On the other hand, 
three of the six dimensions (number sequencing, number facts, and contextual problems) show very few signs of 
DIF.   
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A limitation to our DIF analysis was the lack of access to other demographic information. As new test questions 
are added to the item pool, it will be very important to conduct a study dedicated to DIF with a wide range of 
student and teacher demographics. In addition, the variations in test item measurement effectiveness increased 
the likelihood that item bias using DIF analysis was not identified.    

Nevertheless, the PMA-S was found to assess mathematical proficiency in kindergarten to second grade students 
remarkably well. As we continue development of this instrument, more work needs to be conducted in 
understanding grade performance differences and other differences that may be problematic. 

6. Implications 

The findings from this study support the theoretical construct that an assessment of mathematical proficiency 
must include the measure of six dimensions. Other assessment tools only address a few, and in fact are not 
effective in early grades. The utilization of an assessment tool that measures effectively mathematical 
proficiency on multiple dimensions, in early childhood education, is essential to the growth of math capabilities 
in older students. Missing the opportunity to assist children who are experiencing a proficiency gap in one of the 
dimensions can haunt a student’s growth for many years, if not indefinitely. Though this study indicates some 
important issues that need to be addressed as the development of the PMA-S continues, the findings do show a 
significant opportunity to improve mathematical proficiency in K-2 students. 
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Appendix A 

Appendix A1. Mplus Code Example for EFA 

TITLE:  

      EFA for grade combined - oblique Geomin rotation 

      Kindegarden through G2 

DATA: 

      FILE IS GC_Data.dat; 

VARIABLE: 

      NAMES ARE GC_ID grade ns08 ns12 ns18 ns19 nf08_33 

         nf13_38 nf20 rt12 rt18 rt23 cntxt03 cntxt07 

         means01 means02 means11 spa10 spa13 spa30; 

 USEVARIABLES ARE ns08 ns12 ns18 ns19 nf08_33 

        nf13_38 nf20 rt12 rt18 rt23 cntxt03 cntxt07 

        means01 means02 means11 spa10 spa13 spa30; 

 CATEGORICAL ARE ns08 ns12 ns18 ns19 nf08_33 

       nf13_38 nf20 rt12 rt18 rt23 cntxt03 cntxt07 

       means01 means02 means11 spa10 spa13 spa30; 
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ANALYSIS: 

!     TYPE = efa 6 6;  ! used for one dim model at a time 

     TYPE = efa 1 8; 

!     ROTATION = quartimin;  ! same as Geomin results 

     ITERATIONS = 100000; 

PLOT: 

      TYPE = PLOT2; 

Appendix A2. Mplus Code Example for IRT Analyses 

TITLE:  

      IRT model analysis of winter 2016 

      Kindegarden data - G0 

DATA: 

      FILE IS GC_CFA.dat; 

VARIABLE: 

      NAMES ARE Dis_no Sch_no sex ethnic ell_lep iep 

           grade ns08 ns12 ns18 ns19 nf08_33 

           nf13_38 nf20 rt12 rt18 rt23 cntxt03 cntxt07 

           means01 means02 means11 spa10 spa13 spa30; 

      USEVARIABLES ARE ns08 ns12 ns18 ns19 nf08_33 

           nf13_38 nf20 rt12 rt18 rt23 cntxt03 cntxt07 

           means01 means02 means11 spa10 spa13 spa30; 

      USEOBSERVATIONS ARE (grade EQ 0); 

      CATEGORICAL ARE ns08 ns12 ns18 ns19 nf08_33 

           nf13_38 nf20 rt12 rt18 rt23 cntxt03 cntxt07 

           means01 means02 means11 spa10 spa13 spa30; 

                !when 1 and 2-PL modeling 

!       CATEGORICAL = ns08 (3pl) ns12-spa30 (3pl); 

!              !when 3-PL modeling 

ANALYSIS: 

!      ESTIMATOR = MLR; 

!           ! when for 3-PL modeling 

      ESTIMATOR = WLSMV; 

            ! when 1 2-PL modeling 

!      DIFFTEST = mydiff.dat 

!           ! second step testing nested models 

MODEL: 

      f BY ns08-spa30* (1); 

              !when 1-PL modeling 

!      f BY ns08-spa30*; 

!             !when 2 3-PL modeling 

      f@1; 

      [f@0]; 
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OUTPUT: 

       STDYX TECH1 TECH5; 

PLOT: 

      TYPE = PLOT1 PLOT2 PLOT3; 

SAVEDATA: 

        difftest is mydiff.dat; 

            !first step testing nested models  
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