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Abstract 

This paper is about the logic of golden ratio. It is about the calculation of its value and the inverse value, 

examination of its uniqueness, the relation with Fibonacci sequence and its spiral and the logic of development of 

an organism. We expand the logic of golden ratio up until the sequence of Zeno from Elea that tends to infinity. We 

find the differentiate logic of golden ratio coming from ancient years and its unknown relation to the golden ratio. 

Also, we calculate the values θ of series that follows the logic of golden ratio, reaching the golden (normal) series, 

as a result of its logic, with its modern applications. Finally, it is criticized the fact that we do not include golden 

ratio in our education and the consequences that this has, by compare it with the achievements of its era. The 

application of golden ratio‟s logic in social sciences results in possible examples of its use and their advantages. 

Keywords: golden ratio, Fibonacci sequence, natural science, physics, social science 

1. Introduction 

Mathematical tools are been used in different fields of study and sciences in order to solve different problems. In 

some science applications the use of those tools has been admirably effective. A great example is the application of 

the golden ratio in Architecture. In Ancient Hellas the golden ratio was considered to be the expression of the inner 

harmony of nature and it was used as a mean of analogy in constructions, as would be the logic sense of nature. It 

is known from very old times, from geometric times, from the Egyptian pyramids and with its use were created 

amazingly beautiful structures that we admire even today. The purpose of this work is to utilize the existing 

knowledge in relation to the golden ratio, to interconnect independent parts of it, to broaden it and apply it to new 

fields such as the social field. By studying the golden ratio we find that it is used in one-dimensional quantities, like 

length and it is not used in two-dimensional or three-dimensional quantities, like surfaces or masses. Therefore, the 

study of the logic of the golden ratio has not been exhausted, so it is possible to extend it and apply it to fields other 

than the established ones. 

2. Golden Ratio 

The golden ratio is the intersection of a straight line length γ into two parts α and β 

          γ 

/----------------/------------------------------------/ 

                                  α                   β  

so that it is valid that   α + β = γ   and    
 

 
 

 

 
 = φ 

where         γ = the length of a straight line 

          α = the length of first part  

   β = the length of second part 

   φ = the coefficient of ratio φ = α / β  
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(letter φ is the initial letter of the Hellenic name “Phidias”, as an honor of the architect of the Parthenon). 

The golden ratio is calculated by solving the equations α + β = γ and 
 

 
 

 

 
   setting the length of the linear 

part γ = 1, then 
 

 
 

 

 
    so the β = φ. 

We also have 
 

 
   but β = φ then 

 

 
               

If we replace the α and β in the equation α + β = γ and we write the equivalent of θ
2
 + θ = 1  

or in normal form the quadratic equation     θ
2
 + θ – 1 = 0 

The discriminant of equation it is Δ = b² - 4 a c = 1
2
 – 4.1.(-1) = 1 + 4 = 5    and because Δ > 0 is positive that 

means that the equation has two roots              
                      

  
  

    
                 

   
 

                   

    
 

       

  
        

   
                 

   
 

                   

    
 

       

  
        

The root φ2 is negative while the lengths are positive, this means that the root φ2 is not real solution of equation  

φ
2
 + φ - 1 = 0 and remains as a solution of the equation the φ = φ1 = 0,618 

then  β = φ the length of part β is β = 0,618  

and α = φ
2
 the length of part α isα = 0,618

2
 = 0,382

 

For verification α + β = γ => 0,382 + 0,618 = 1 

The initial relationship of sections α and β can be written upside down 
 

 
 

 

 
    

 

 
 

 

 
  

Then β = 1/φ’ and α = β/φ’ = 1/φ’
2
 converting the equation α + β = γ in φ’

2
 – φ’ – 1 = 0 

and the root is:  

    
                 

   
 

                   

    
 

      

  
        

    
                 

   
 

                   

    
 

      

  
         

The solution θ‟2  is negative and so it remains as a real solution θ‟ = θ‟1 = 1,618 

Consequently β = 1/θ΄ = 1/1,618 = 0,618 and α = β/θ‟ = 0,618/1,618 = 0,382 

The well-known since the time of Pythagoras, separation a part or a totality in parts that measure α = 0,382 and   

β = 0,618 of totality γ = 1 are the parts of the golden ratio. 

The results of the two solutions θ = 0,618 and θ‟ = 1,618 are interesting while related to each other θ΄ – θ = 1 

(1,618 – 0,618 = 1) and θ‟ * θ = 1   (1,618 * 0,618 = 1)   which means θ‟ – θ = θ‟ * θ = 1 

Also valid θ‟ - β = 1 and θ‟ * β = 1 which means θ‟ – β = θ‟ * β = 1 or 

1,618 – 0618 = 1,618 * 0,618 = 1 

The unusual result for the upper equations indicates the uniqueness of the number θ. 

2.1 The Solution of the Golden Ratio in Antiquity 

Τhe Figure 1 shows the geometrical solution of the intersection of a rectilinear part A-B into two sections, which 

have the golden ratio, as it was known in antiquity, 
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Figure 1. Geometric solution of the intersection of a line part A-B in two parts 

 

2.2 The Naturalness of the Golden Ratio 

The mathematical ratio φ = 0,618 and θ‟ = 1,618 can been seen in nature, for example the ratio between the branches in 

plants, the bones in animals, the ratio in the development of spirals in shells and snails, the ratio of lengths in the human 

body also hold the analogy of φ. The ratio φ was used in constructions in Ancient Hellas, like Parthenon of Athens which 

is considered one of the most beautiful architectural monuments, in the Aphrodite of Milos and in many more creations 

in Ancient Hellas and in Mediterranean during the Hellenistic period, with miraculous results of expression of their 

perfection, of their beauty, of harmony with nature as if it is an extension of its own logic. 

Nature itself seems to choose this ratio φ by equilibrate the countervailing forces of different parameters into harmony 

which in our eyes seems like beauty. The beauty is a relative value. We consider what we are used to seeing as beautiful. 

Because the first thing we see when we come to life and see it for a long time is nature, it enters as a model in the 

recordings of our brain and so that it has its own logic, its own proportions we consider it beautiful. We could name the 

ratio φ natural ratio and not golden ratio as it has more to do with nature than gold. 

3. Golden Ration and Fibonacci Sequence 

It is impressive the relation of golden ratio φ with Fibonacci sequence, in which every next number of the sequence is the 

sum of the two preceding numbers αn = αn-1 + αn-2 such as  

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584…..etc. 

So we conclude easily that the quotient of (two) consecutive numbers of the Fibonacci sequence as it develops, tends 

towards φ or φ’ respectively, such as  

 

 
          

 

 
       

 

 
         

 

  
         

  

  
        

  

  
        

  

  
        

  

  
         

  

   
       

and 

 

 
         

 

 
        

 

 
         

  

 
         

  

  
         

  

  
        

  

  
         

  

  
         

   

  
       

It is also impressive in music for example, that one octave of 13 steps consists of 8 notes with 5 semitones (5, 8, 13 

parts of the sequence) and the tones are parts of the diatonic and chromatic scale. In that way, today we have the 

opportunity to create music by the rules of math and submitting to ratio φ. 

The spiral based on Fibonacci sequence is constructed from squares, the sides of which are numbers of the 

sequence, joined by arcs with radius equal to their sides. 
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34 x 34

55 x 55

21 x 21

13 x 13

8 x 8
5 x 5

3x32x2

 

Figure 2. Fibonacci squares and their spiral 

 

Also, the ratio of its consecutive squares follows the same by pointing towards the second part of the golden ratio 

the θ
2
 = 0,382. 

   
  

          
  

          
  

            
   

           
   

           
   

           
   

            
   

           

This spiral is been observed in natural processes like the evolution and growing of shells, plants, flowers, tornados, 

galaxies and so on. The Fibonacci sequence it is not only an interesting mathematical phenomenon, but it uncovers 

the way nature develops itself. By its definition, every next number of the sequence results from the sum of the two 

preceding ones, we can interpret that every stage of the development of an organism is based in the two preceding 

stages constituting their sum. This is not only about natural procedures - as it has already been observed - but the 

development in every natural and social field. The Fibonacci sequence can be interpreted as a continuation and 

application of Democritus' fundamental phrase "Nothing is born of nothing..." so to understand that everything is 

created from the pre-existing. 

4. Expanded Concept of Golden Ratio 

It is reasonable to ask the following questions: 

The golden ratio is the only case of nature's “logic”? 

Can this “logic” be extended to other applications? 

What is the ratio θ when a section is divided into more than two parts? 

How can the totality of different parts be in inner balance, harmony? 

4.1 Enlargement in Many Sections 

We suppose that δ is a straight part divided into three parts α, β and γ 

δ 

/-----------------/----------------------------/---------------------------------------/ 

                          α                  β                            γ 

so that it is true that  α + β + γ = δ and 
 

 
 

 

 
 

 

 
   where φ = coefficient the ratio 

We set that the length of the linear part δ = 1 unit of length 

then γ / δ = γ / 1 = φ which it comes from that the γ = φ 

and β / γ = φ but after the γ = φ then β = φ
2
 

in continuation α / β = φ but after the β = φ
2 
then α = φ

3
  

replaced the α + β + γ = δ and generate the equivalent equation φ
3
 + φ

2
 + φ

1
 = 1 

or in normal form for the cubic equation φ
3
 + φ

2
 + φ

1
 – 1 = 0  

The cubic equation it should have three roots θ1, θ2, and θ3 

Continuing with the same reasoning, dividing a straight section ε into four parts,  
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We have α + β + γ + δ = ε and 
 

 
 

 

 
 

 

 
 

 

 
  . In this way we make a 4

th
 degree equation 

φ
4
 + φ

3
 + φ

2
 + φ

1
 - 1 = 0 or an equation of such degree as the parts of the section.  

Such equations of high degree cannot be solved using conventional methodology and for that reason we take 

non-conventional solutions for the quantification of φ in every equation. 

We observe that the equations 1 = θ
1
 + θ

2
,  1 = θ

1
 + θ

2
 + θ

3
, 1 = θ

1
 + θ

2
 + θ

3
 + θ

4
 consist of members with the form 

of members a geometric progression θ
0
, θ

1
, θ

2
, θ

3
,  θ

4
, θ

5
,.......θ

n
 with a typical terms θn = θ * θ 

n-1
. 

Where φ = ratio of geometric progression 

  n = the number of members of the geometric progression 

Extending that logic, we find a series of infinite section parts of a straight-line segment or a totality  

α + β + γ + δ + ε + δ + ε + ζ + … toward infinity...… = 1 

In which is valid 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
                     . 

We can create equations for the cut of a straight-line part or a totality in as much parts as we want, from the two that 

define the golden ratio until to infinite sections. All these cases could be expressed as equations of a geometric 

progression‟s sum with n parts that are show in the following table. 

 

Table 1. The equations with the golden ration logic  

Sections the corresponding equation φ 

1 1 = θ
1
  1 

2 1 = θ
1
 + θ

2
  0,618 

3 1 = θ
1
 + θ

2
 + θ

3
  ; 

4 1 = θ
1
 + θ

2
 + θ

3
 + θ

4  
 ; 

5 1 = θ
1
 + θ

2
 + θ

3
 + θ

4  
+ θ

5
 ; 

6 1 = θ
1
 + θ

2
 + θ

3
 + θ

4  
+ θ

5
 + θ

6
  ; 

7 1 = θ
1
 + θ

2
 + θ

3
 + θ

4  
+ θ

5
 + θ

6
 + θ

7
 ; 

8 1 = θ
1
 + θ

2
 + θ

3
 + θ

4  
+ θ

5
 + θ

6
 + θ

7
 + θ

8
 ; 

9 1 = θ
1
 + θ

2
 + θ

3
 + θ

4  
+ θ

5
 + θ

6
 + θ

7
 + θ

8
 + θ

9
  ; 

10 1 = θ
1
 + θ

2
 + θ

3
 + θ

4  
+ θ

5
 + θ

6
 + θ

7
 + θ

8
 + θ

9
 + θ

10
 ; 

 and so on  

n 1 = θ
1
 + θ

2
 + θ

3
 + θ

4  
+ θ

5
 + θ

6
 + θ

7
 + θ

8
 + θ

9
 + θ

10
 +…+…+ θ

n
 ; 

 

The solution of these equations is done according to the property of geometric progression‟s sum with the number of 

members, as many as the segments in which the totality equals 1. 

∑   
       

   

 

   
    when θ < 1  

where   n   - is the parts in which a straight line or a totality is divided  

φ   - is the characteristic ratio of the geometric progression 

Σn  - is the sum of parts in which is divided the totality that is always one 

When a totality is divided into infinite parts, then it is true that: 

∑        
 

   

 

   
   and solving it follows that  θ = 1 - θ =>  2θ = 1 => θ = 1 / 2  
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Between the division of a totality into two parts and into infinite parts, there are the cases in between them which are 

shown in the following table and diagram. The following values in Table 2 have been calculated by software in a 

computer. The ratio φ in all series is φ < 1 which means that the series are converging.  

 

Table 2. Values of the members of geometric progression with the logic of the golden ratio 

N θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 Σ 

1 1,000          1,00 

2 0,618 0,382         1,00 

3 0,544 0,296 0,161        1,00 

4 0,519 0,269 0,140 0,072       1,00 

5 0,509 0,259 0,132 0,067 0,034      1,00 

6 0,504 0,254 0,128 0,065 0,033 0,017     1,00 

7 0,502 0,252 0,127 0,064 0,032 0,016 0,008    1,00 

8 0,501 0,251 0,126 0,063 0,032 0,016 0,008 0,004   1,00 

9 0,501 0,251 0,125 0,063 0,031 0,016 0,008 0,004 0,002  1,00 

10 0,500 0,250 0,125 0,063 0,031 0,016 0,008 0,004 0,002 0,001 1,00 

.... .... .... .... ..... ..... ..... ..... ..... ..... ..... ... 

n 0,500 0,250 0,125 0,063 0,031 0,016 0,008 0,004 0,002 0,001 1,00 

 

where θ1, θ2, θ3, ……θn………… are the values of all the members of the geometric progression 

and the n = the number of sections to linear part, or a totality  

The 10-part series terms are the approximately same as the terms of the series of infinite sections. Therefore, 

intermediate values tend to remain almost the same until the order of infinite terms that are:    

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

  
 

 

   
       

This can also be seen in the diagram in Figure 3. 

 

Figure 3. The terms θ1, θ2, θ3, …θn… of geometric progression in diagrammatic form 

 

4.2 Uniqueness of φ and in Expanded Cases 

Table 2 is also showing the uniqueness of ratio φ for these series e.g.:  

A rectangle formed by two sections of a totality α = 0,382 and β = 0,618 has surface α * β = 0,618 x 0,382 = 0,236 

which is exactly as the result of the subtraction α - β = 0,618 - 0,382 = 0,236. 

A parallelepiped formed by 3 sections of a totality α = 0,544, β = 0,296 and γ = 0,161 has a volume of  
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α * β * γ = 0,544 x 0,296 x 0,161 = 0,026     which is exactly as the result of the subtraction 

α * β – β * γ – α * γ = 0,544 x 0,296 - 0,296 x 0,161 - 0,544 x 0,161 = 0,026 

A time-space entity formed by 4 sections of a totality α = 0,519, β = 0,269, γ = 0,140, δ = 0,072 has a value of  

α * β * γ * δ = 0,0014 which is exactly as the result of the subtraction of their products 

(α * β * γ) – (β * γ * δ) – (α * β * δ) – (α * γ * δ) = 0,019 - 0,002 - 0,010 - 0,0005 = 0,0014 

This characteristic is repeating in all series because it originates from property of the basic equation       

1 = θ
1
 + θ

2
 + θ

3
 +...+ θ

n
 

Golden (normal) series could be applied in all fields of mechanics like architecture, mechanical engineering, electrical 

engineering and also other fields like economics and sociology, in a way that expresses an internal harmony between the 

parts of a totality. 

5. The Golden (Normal) Series 

The last equation in Table 2 is the case of a straight part or a totality divided in infinite parts, following the logic of the 

same relation of the successive terms of the series as the golden ratio. It is known, by Zeno of Elea (488 - 425 B.C.), that 

the sum of series of infinite terms in a descending geometric progression with ratio φ = ½ is equals with one (1). 
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The sum of geometric progression of infinite terms is ∑     
 

   

 

   
   when θ < 1  

Where θ = 1 - θ = > θ + θ = 1 => 2θ = 1 => θ = 1 / 2 and the terms of this row is: 

(0,500),  (0,250),  (0,125),  (0,063),  (0,032),  (0,016),  (0,008), (0,004),  (0,002),  (0,001), …… 

Golden ratio and Zeno‟s sequence is the beginning and end of a natural logic. In other word the golden ratio is a section 

of segment in two parts while the Zeno‟s sequence is the section of a segment in infinite parts with the same logic.  

 

From Zeno‟s sequence results another popular series which is widely used today. For an easier use of this, we take the 

derivatives of 10, 100, 1000 etc of its terms and so we have the following series 

1 1,25 1,6 2 2,5 3,2 4 5 6,3 8 

10 12,5 16 20 25 32 40 50 63 80 

100 125 160 200 250 320 400 500 630 800 

1000 1250 1600 2000 2500 3200 4000 5000 6300 8000 

and so on. 

This series is known between engineers but perhaps it is not well-known that this is an extension of the golden ratio logic 

which use today is based on the regular series 

1, 1.25, 1.6,  2, 2.5,  3.2,  4, 5,  6.3,  8,  10, 12.5, 16...etc 

This series can be named “golden series” but because it has more to do with regularity, it would be better to name it 

“normal series”. Golden ratio and normal series originate from the same logic. 

The golden (natural) ratio and golden (normal) series come from the same logic, the division of a unity in parts with a 

specific logic, division of a part (totality) in two parts, such as golden ratio or in infinite parts, such as golden (normal) 

series.  

5.1 Examples of Application of the Golden (Normal) Series 

Various applications of this series are presented below. 

 

Table 3. Standardization of tube diameters 

10 15 20 25 32 40 50 63 80 100 125 160 mm 

3/8" 1/2" 3/4" 1" 1 1/4" 1 1/2" 2" 2 1/2" 3" 4" 5" 6" inch 
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Table 4. Standardization of nominal equipment pressures 

6 10 12 16 20 25 32 40 50 63 80 100 bar 

 

Table 5. Standardization of cross-sections of electrical cables 

1 1,5 2,0 2,5  4,0  6,0 8,0 10,0  16,0 mm
2
 

 

Table 6. Standardization of electrical fuse 

10 16 20 25 32 40 50 63 80 100 125 160 Α 

 

Table 7. Standardization of crane and vehicle loads 

6,3 8 10 16 20 25 32 40 50 63 80 100 ton 

 

Table 8. Standardization of revolutions in machine tools        

100 160 200 250 320 400 500 630 800 1000 1250 1600 min-1 

 

The properties of the regular series that make it preferable in electromechanical applications and enable many 

other applications are that: 

 each member maintains the same relationship with its previous and next (by definition)    

 in each member there is a next member of the series with 2 times its value  

 in each member there is a next member of the series with 10 times its value  

 in each member there is a next member of the row with the square of its value  

 the difference between the successive values of the normal range is up to 12%.  

6. Conclusions and Observations Golden Ratio Logic 

It is observed that the ratio φ comes from nature and it is already used in natural sciences, biology, architecture, 

electrical engineering and mechanical engineering etc.  The φ’ = 1,618 or φ = 0,618 are natural constants like the  

π = 3,14159 which was identified by Archimedes and the e = 2,71828 which was determined by Bernoulli. The 

constant φ though is not taught in school math as a constant that nature chooses in its development, balancing the 

opposite forces, as taught the other two physical constants π and e.  

Introducing the teaching of the golden ratio in the educational program in the classic and in its expanded sense will 

give future employees and future executives a tool to search for the best solution in their works. The golden ratio 

and the normal series, while being used in applications of natural sciences with good results, are not used in the 

field of social sciences and their applications where quantitative problem solving is generally not used. Efforts to 

solve social problems that arise (because for efforts are talked about and not solutions) are not made with 

mathematical tools but with legal and political tools, which often prove to be insufficient or inappropriate. 

Numerous legal texts, laws, decrees, regulations, circulars are required, proving the inadequacy of the applied 

problem-solving tools. This explains the backwardness of the social sciences in relation to the natural sciences and 

their applications.  

7. Comparative Example of Application of Natural and Social Sciences 

Today the travel of people and their constructions to space is just a routine, which was impossible to imagine 200 

years ago, even someone with bold thinking, but for the 2500-year-old concept of democracy in Athenian society 

today efforts are still being made to implement it and this with shortcomings where its implementation has been 

partially achieved. 

In problems that arise in the social field and in the conflicts that try to be solved through the social sciences, the 

logic of the golden ratio or the normal of series of things is not sought, but the maximum and the minimum as a 

solution to the problem. This concept of solving social problems without mathematical tools comes from the 

notion of maximalism and not from applications of scientific justification like golden ratio. It is attempted, that it is 

done in the social field to be at its maximum, e.g. or movement to be the largest, most massive, faster, the buildings 

https://en.wikipedia.org/wiki/Jacob_Bernoulli
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higher, the constructions greater, the benefits of a process to be the maximum, the losses to be minimal and the 

profits the maximum, reaching up to be über alles. 

From the results of application of the logic of maximalism it seems that they are achieved with the maximum 

positive results and the maximum problems that accompany them. Without overlooking the achievements of 

modern society, when we compare them with the achievements of antiquity and considering respectively the 

technological level, observed the lag in today‟s works.  

The works of antiquity (material and non-material) from classical and Hellenistic period, despite the passage of 

thousands of years and many barbarian behaviors on them, remain works to admired from the whole world. This 

seems to be due not so much to the external result of the perishable works of the ancient works but to their interior, 

what their indestructible logic contains. 

In this context we examine the ancient Hellenic phrase that traveled from ancient times up until today “οὐκ ἐν τῷ 

πολλῷ τὸ εὖ“ (the good, not located at most) which means that the more is not the best. The phrase was used by a 

musician teacher called Kafisias, to his student who was playing his flute with extra volume but without achieving 

the desirable result in the end. Golden ratio is an applicable form of this phrase, without excluding other 

expressions and relation that manage in a different way inner harmony between different parameters of a totality, 

like the half of a value etc. The maximalistic logic of today is contrary to that ancient phrase and the golden ratio 

applications which is the aim of this paper.  

The inner harmony of nature and then of the constructions following its logic is not met in social matters where the 

rivalry between standard, solid points of view does not leave room for solutions based on golden ratio, even if there 

would be an intention for this. Trying to convince an opponent of the validity of a point of view, is not the search 

for the truth, but proselytizing towards a point of view. It is far from the ancient phrase of Socrates “εν οίδα ότι 

ουδέν οίδα„‟(I know that I know nothing) which is towards finding the truth.  

There is no education that can include these ideas and we are not teaching about the search of inner harmony in 

physics and social sciences, as well as we do not teach about golden ratio. We have it in the realm of mysticism and 

not in its mathematical explanation, integrated into the school curriculum with its applications. Likewise, we do 

not teach the dialectic method of Zeno as a method of solving problems, even if it is approximate solution, in the 

social sciences field. The relations φ in table 2 could possibly give solutions to social problems by analyze the 

inner structure, contrary to today‟s approach which is based in decrees and ineffective laws. 

7.1 Examples 

Example 1: Employees in primary sector, secondary and tertiary sector of economy. 

If there are employees in primary sector ≥ employees in secondary sector ≥ employees in tertiary sector of 

economy, then there will be a lack of employees of higher qualification and technological knowledge which means 

that this sector will be less advanced resulting in reduced economic development of a country and creation 

conditions for job losses and people migrating. 

If employees of primary, secondary and tertiary sector are distributing while maintain a ratio like the natural ratio 

between 3 parts of a totality, following the hierarchy of the enterprises of the first, second and third sectors of the 

economy, then based on the above mentioned there will be an equilibrium economy in county‟s, maintaining jobs 

by reducing immigration trends. 

Example 2: Students in primary, secondary, tertiary degrees and master degrees 

If students in primary school = students in secondary (high school) = students in tertiary degree (universities) = 

students in master degrees, then in business market there will be a lack of lower-level work force and as a 

consequence higher cost of employees, higher cost of products, reduced competitiveness of businesses and of 

national economy with creation conditions of job losses and people migrating. 

If the students between the 4 levels of studies had a ratio like the natural ratio of 4 parts of a totality, by following 

the organizational scale of production, then the competitiveness of businesses will increase so as the national 

economy and there will be less people for migrating. 

Example 3: Income tax assessment scales. 

If the income of an entrepreneur exceeds the lower limit of an income ladder, he will pay the same tax percentage 

as an entrepreneur who is at the upper limit of the same ladder. This creates a tendency to find interventions in the 

artificial transfer of income to the lower scale, thus tax evasion and reduction of government revenues.  

https://en.wikipedia.org/wiki/I_know_that_I_know_nothing
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If the income scales are infinite (or enough to be considered infinite) as is actually the incomes of workers in a state, 

scaled by a ratio that the citizens would consider reasonable, then there will be no need to create bypass 

mechanisms of legal and tax provisions, maintaining in the real dimension the state revenues from taxes. 

Teaching the logic of the golden ratio in the mathematics curriculum in secondary and tertiary education will give 

tomorrow's employees and executives, problem solving tools in the direction of finding the golden ratio of the 

opposing forces of everyday problems.    
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