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Abstract 

Climate change poses a significant threat to European security, implicitly to Romania's naval forces in the Black 

Sea. Rising sea levels, extreme weather events, and ocean acidification impact maritime operations, 

infrastructure, and personnel, with potential ramifications for regional stability. This paper explores the 

implications of climate change for the Romanian Navy and proposes "Green Defence" strategies to enhance 

resilience and sustainability. These strategies encompass energy efficiency, renewable energy integration, 

sustainable procurement, and the application of advanced functional materials in naval operations and 

infrastructure. By adopting a proactive and multifaceted approach, the Romanian Navy can adapt to the changing 

climate, ensuring operational effectiveness while minimizing environmental impact. This approach aligns with 

broader European security concerns and contributes to a more sustainable and resilient defence posture in the 

face of climate-related challenges. 

Keywords: climate change adaptation, Romanian Navy, green defence, self-healing materials, robust 

infrastructure, sensor systems, coastal security, resilience 

1. Introduction 

Climate change, once a distant concern, is now an undeniable reality with significant implications for security 

and defence (IPCC, 2023). The maritime domain, encompassing coastlines and naval operations, is particularly 

susceptible to the adverse effects of a warming planet (Department of Defense, 2021). Rising sea levels, 

intensified storms, and altered ocean chemistry threaten naval infrastructure, disrupt operations, and amplify 

existing security risks Vousdoukas & Mentaschi, 2018; Sweet et al., 2017). 

Romania, with its Black Sea coastline and crucial role in regional security, faces a unique set of climate-related 

risks (Romanian Ministry of National Defence, 2020). The Black Sea region is experiencing accelerated 

warming, leading to sea-level rise, shifts in precipitation patterns, and potential disruptions to marine ecosystems 

(Oguz, 2008). These evolving environmental conditions necessitate a comprehensive and proactive response 

from the Romanian Navy to maintain its operational effectiveness and fulfil its mandate to safeguard maritime 

security. 

The concept of "Green Defence" has emerged as a framework for integrating environmental considerations into 

military planning and operations (Ministry of Defence, 2021). Green Defence encompasses a holistic approach 

that aims to minimize the environmental impact of military activities while simultaneously bolstering operational 

resilience and effectiveness in the face of climate change (NATO, 2023). It represents a paradigm shift in 

military thinking, recognizing the inextricable link between environmental sustainability and long-term security. 

A pivotal element of Green Defence is the strategic integration of advanced functional materials into naval 

platforms, infrastructure, and equipment. These materials, engineered with specific properties and performance 

characteristics, offer transformative solutions for addressing the challenges posed by climate change (Yang & 

Urban, 2013). From self-healing coatings that mitigate corrosion to lightweight composites that enhance fuel 

efficiency, advanced functional materials have the potential to revolutionize naval capabilities and promote 

sustainability (Thakur & Kessler, 2015). 
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This paper explores the integration of advanced functional materials as a cornerstone of the Romanian Navy's 

Green Defence strategy. It examines the specific climate-related threats facing the Navy, the principles of Green 

Defence, and the potential applications of advanced functional materials in naval operations. Through case 

studies and analysis, this paper aims to demonstrate how advanced materials can contribute to a more resilient, 

sustainable, and effective Romanian Naval Force in the era of climate change. 

2. Method 

This research employed a comprehensive approach, integrating qualitative and quantitative methods to analyze 

the implications of climate change for the Romanian Navy and identify potential solutions. The study involved 

an extensive review of existing literature, including scientific articles, reports, and policy documents, to 

understand the current state of knowledge on climate change impacts, Green Defence strategies, and advanced 

functional materials. Data collection included an analysis of relevant national and international climate data, as 

well as information on the Romanian Navy's current capabilities and infrastructure. 

The collected data was analyzed using a combination of methods, including trend analysis, risk assessment, and 

cost-benefit analysis, to evaluate the potential impacts of climate change on naval operations and identify the 

most effective adaptation measures. The study also involved the development of conceptual frameworks and 

case studies to illustrate the practical applications of Green Defence strategies and advanced functional materials 

in enhancing the Romanian Navy's resilience to climate change. 

3. Results 

Our analysis of climate data for the Black Sea region reveals a concerning trend of accelerated sea-level rise, 

exceeding the global average. This poses a significant threat to the Romanian Navy's coastal infrastructure, 

including naval bases and operational areas, increasing the risk of inundation, erosion, and saltwater intrusion. 

Additionally, the frequency and intensity of extreme weather events, such as storms and floods, are on the rise, 

potentially disrupting naval operations, damaging infrastructure, and jeopardizing personnel safety. Furthermore, 

the Black Sea's unique hydrographic characteristics make it particularly vulnerable to ocean acidification, which 

accelerates the corrosion of naval assets, leading to increased maintenance demands and potentially reduced 

operational lifespans. These findings underscore the urgent need for the Romanian Navy to adopt comprehensive 

adaptation strategies to mitigate the adverse effects of climate change on its operations and infrastructure 

(Mihailov et al., 2024). 

3.1 Climate Change Impacts on Romanian Naval Operations: A Comprehensive Analysis 

The Black Sea region, is experiencing a disproportionate impact from climate change compared to the global 

average (Korshenko et al., 2008). This is manifested in several key areas, each with distinct implications for 

naval operations: These changes pose a multi-faceted challenge to naval operations, infrastructure, and personnel, 

necessitating a comprehensive adaptation strategy. 

Sea-Level Rise. The Black Sea is experiencing an accelerated rate of sea-level rise, exceeding the global average 

(Mihailov et al., 2018, Avşar et al., 2015). This phenomenon threatens naval bases, coastal infrastructure, and 

low-lying operational areas. Inundation, coastal erosion, and saltwater intrusion into freshwater resources are 

increasingly jeopardizing operational readiness and logistical support for naval forces (Avşar et al., 2015). 

Constanta city, a vital Romanian port city renowned for both its tourism and industry, as well as a critical asset 

for the Romanian Navy, has already witnessed increased flooding events (Buzgaru & Maftei, 2021), 

underscoring the vulnerability of essential infrastructure to sea-level rise. 

Extreme Weather Events. The frequency and intensity of extreme weather events, such as storms, floods, and 

heatwaves, are escalating in the Black Sea region (Lionello & Scarascia, 2018a). These events disrupt naval 

operations, damage infrastructure, and endanger personnel safety. The Copernicus Climate Change's European 

State of the Climate 2023 (Copernicus Climate Change Service & the World Meteorological Organization, 2023) 

highlights the increasing frequency and intensity of extreme weather events in the region, which can directly 

impact naval operations, possibly resulting in cancelled or postponed exercises. 

Ocean Acidification. The unique hydrographic characteristics of the Black Sea render it particularly susceptible 

to ocean acidification (Elge, 2021). The increasing acidity of seawater accelerates the corrosion of ships, 

submarines, and other naval assets, necessitating more frequent and costly maintenance while potentially 

reducing the operational lifespan of these assets (Valdez et al., 2016;Abbas & Shafiee, 2020; Beavers et al., 1986). 

This additional financial burden strains the Navy's resources and can affect long-term planning. 

Changes in Marine Ecosystems. Climate change is disrupting marine ecosystems in the Black Sea, altering the 

distribution and abundance of marine species (Daskalov, 2002). These changes can have cascading effects (FAO, 
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2020) on food security for coastal communities, potentially leading to social unrest and regional instability. 

Additionally, the proliferation of harmful algal blooms (Boicenco et al., 2019), triggered by warming waters and 

nutrient runoff (Oguz, 2005), can disrupt naval training exercises and pose health risks to personnel.  

These climate-induced changes are not merely future projections; they are already impacting (Presidential 

Administration of Romania, 2023; Ministry of Environment and Climate Change Romania, 2013) the Romanian 

Navy's operational environment. Adapting to these challenges requires a multifaceted approach that encompasses 

infrastructure upgrades, operational adjustments, technological innovation, and a commitment to sustainable 

practices. 

The integration of Green Defence strategies, including the utilization of advanced functional materials, offers a 

promising avenue to enhance the Navy's resilience and sustainability in this changing landscape. By adopting 

innovative solutions and embracing a more environmentally conscious approach, the Romanian Naval Forces 

can not only mitigate the adverse effects of climate change but also maintain their operational effectiveness and 

contribute to regional stability in an era of increasing environmental uncertainty. 

3.1.1 Green Defence: A Sustainable Imperative for Enhancing Romanian Naval Resilience 

Green Defence, a strategic paradigm shift, represents a holistic approach to integrating environmental 

sustainability with military operational effectiveness (Ministry of National Defence, 2020). It acknowledges the 

interconnectedness of environmental degradation, climate change, and security risks, recognizing that a healthy 

environment is fundamental to long-term stability and resilience (UNEP, 2019). For the Romanian Navy, Green 

Defence provides a comprehensive framework for mitigating the impacts of climate change while enhancing its 

operational capabilities and long-term sustainability. 

 

Figure 1. Conceptual Framework - Core principles of Green Defence for the Romanian Navy 

 

3.1.1.1 Core Principles of Green Defence for the Romanian Navy (Figure 1) 

a) Energy Efficiency. Reducing energy consumption is a cornerstone of Green Defence. The Romanian Navy can 

achieve this through a combination of approaches: 

- Optimized Ship Design: Implementing advanced hull designs, incorporating lightweight materials, and utilizing 

more efficient propulsion systems (e.g., hybrid or electric propulsion) can significantly reduce fuel consumption 

and emissions (IMO, 2018). 
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- Energy Management Practices: Onboard energy management systems, optimized operational procedures, and 

crew training in energy-saving practices can further enhance efficiency ((Lassesson & Andersson, 2017). 

b) Renewable Energy Integration: 

- Harnessing Solar and Wind Power: The Black Sea region offers abundant solar and wind resources (EC, 2023), 

which the Romanian Navy can leverage to reduce its dependence on fossil fuels. Installing solar panels on ships 

and naval bases and exploring the potential of offshore wind farms can significantly contribute to the Navy's 

energy needs (Dunn et al., 2011) . 

- Energy Storage Solutions: Integrating advanced energy storage technologies, such as batteries or hydrogen fuel 

cells, can ensure a stable and reliable power supply from renewable sources (Ministry of National Defence, 

2016). 

c) Sustainable Procurement: 

- Environmentally Friendly Materials: Prioritizing materials with lower embodied carbon and recyclable or 

biodegradable components and selecting suppliers with strong environmental credentials are key elements of 

sustainable procurement (Ministry of National Defence, 2016; UNGC, 2015; Hrab, 2023). 

- Circular Economy Principles: Adopting circular economy practices, such as reusing, repairing, and recycling 

materials, can minimize waste and resource consumption (Geissdoerfer et al., 2017). 

3.1.1.2 The Strategic Imperative of Green Defence 

Adopting Green Defence principles is an environmental gesture and a strategic necessity for the Romanian 

Navy8. By reducing its environmental footprint, the Navy can: 

- Enhance Public Image: Demonstrate a commitment to sustainability and responsible 

environmental stewardship, enhancing public trust and support (Stockholm International Peace 

Research Institute, 2022). 

- Strengthen Partnerships: Align with international environmental agreements and collaborate with 

other navies and organizations on climate change mitigation efforts (International Institute for Strategic 

Studies, 2020).  

- Improve Operational Capabilities: Energy-efficient vessels have increased endurance and 

reduced logistical burdens, while renewable energy sources enhance energy security and operational 

flexibility (Scutaru, 2024). 

3.1.1.3 Advanced Functional Materials as Enablers 

Advanced functional materials play a crucial role in enabling Green Defence for the Romanian Naval Forces. 

These materials, engineered for specific properties and performance, offer innovative solutions for energy 

efficiency, durability, and environmental monitoring (Burnett et al., 2018; Fangueiro & Rana, 2020). Their 

integration can lead to the development of more resilient and sustainable naval platforms and infrastructure, 

capable of operating effectively in the face of climate change challenges. 

3.2 Advanced Functional Materials: Enabling a Sustainable and Resilient Romanian Navy 

Advanced functional materials, engineered with tailored properties and functionalities, represent a cornerstone of 

Green Defence strategies for modern naval forces. These materials offer innovative solutions (Mohanty & Drzal, 

2005) to address the multifaceted challenges posed by climate change, enhancing the resilience, sustainability, 

and operational effectiveness of naval assets. For the Romanian Navy, the strategic integration of advanced 

functional materials into ship design, infrastructure, and equipment can significantly contribute to achieving its 

Green Defence goals and maintaining maritime superiority in a changing environment. 

3.2.1 Self-Healing Materials: Extending Lifespan and Reducing Maintenance 

Self-healing materials, encompassing polymers and coatings, possess the remarkable ability to autonomously 

repair damage caused by wear, tear, or environmental factors (Hillewaere & Du Prez, 2015). In the naval context, 

these materials offer immense potential for mitigating the degradation of critical components exposed to the 

harsh marine environment (Brostow & Hagg Lobland, 2017). Self-healing coatings applied to ship hulls, for 

example, can automatically seal micro-cracks and scratches caused by saltwater corrosion or minor collisions 

\cite{brostow12}. This not only extends the lifespan of the hull but also reduces the need for dry-docking and the 

associated release of harmful antifouling chemicals into the marine environment (Brostow & Hagg Lobland, 

2017;Williams & Pye, 2016). By incorporating self-healing materials, the Romanian Navy can reduce 

maintenance requirements, preserve resources, and minimize its environmental footprint. 
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3.2.2 Corrosion-Resistant Materials: Combatting the Sea 

Corrosion is a persistent and costly challenge for naval assets operating in the corrosive marine environment 

(Rizzuto et al., 2015). Advanced corrosion-resistant materials, such as high-performance alloys, coatings, and 

composites, offer a robust defence against the deteriorating effects of saltwater (Laque, 1975). For instance, 

nickel-aluminium bronze alloys, known for their exceptional corrosion resistance, are increasingly employed for 

propellers and other underwater components, significantly extending their operational lifespan (Jones, 1991; 

(Wang Pang et al., 2018) By adopting these advanced materials, the Romanian Navy can reduce maintenance 

costs, prolong the service life of its assets, and minimize the environmental impact of corrosion-related waste 

(Revie & Uhlig, 2008). 

3.2.3 Lightweight, High-Strength Composites: Enhancing Efficiency and Performance. Lightweight 

Ligh-strength composites, exemplified by carbon fiber reinforced polymers (CFRP), are revolutionizing naval 

construction (Barbero, 2017). These materials exhibit a remarkable strength-to-weight ratio, surpassing 

traditional materials like steel and aluminium while maintaining or even exceeding their structural integrity 

(Mallick, 2007). By incorporating composites into ship hulls, superstructures, and internal components, the 

Romanian Navy can achieve significant weight reduction, leading to improved fuel efficiency, reduced emissions, 

and enhanced manoeuvrability (Campbell, 2010). The application of CFRP in mast structures and topside 

components is a prime example, where weight reduction translates to improved stability and lower fuel 

consumption (Baley et al., 2024). 

 

Figure 2. Conceptual Framework - Self-healing ship coatings for Enhanced Durability and reduced maintenance 

 

3.2.4 Sensor-Enabling Materials: Monitoring for Proactive Maintenance 

Sensor-enabling materials, such as piezoelectric materials and fiber optic sensors, are indispensable for real-time 

monitoring of the structural health of ships and infrastructure (Udd & Spillman, 2011). By embedding these 

materials into naval assets, the Romanian Navy can gain continuous insights into the condition of its vessels, 

enabling proactive maintenance and early detection of potential failures (Chen et al., 2023). This approach not 

only enhances safety and operational readiness but also contributes to Green Defence by minimizing the need for 

reactive repairs and replacements. For instance, fiber optic sensors embedded within ship hulls can detect and 

localize structural damage, such as cracks or deformations, facilitating timely repairs and preventing catastrophic 

failures (Güemes et al., 2010; Santos & Farahi, 2014). 

4. Case Studies: Applications of Advanced Functional Materials in the Romanian Navy 

This section presents three case studies focusing on self-healing ship coatings, corrosion-resistant infrastructure, 

and sensor networks for early warning to illustrate the practical implementation and potential benefits of 

advanced functional materials within the Romanian Navy's Green Defence strategy. 

4.1 Self-Healing Ship Coatings for Enhanced Durability and Reduced Maintenance (Figure 2) 

The Challenge: The rough marine environment, characterized by salt water, waves, biofouling, and mechanical 
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stresses, subjects ship hulls to constant wear and tear, leading to corrosion, fouling, and physical damage (Laque, 

1975). These issues necessitate frequent maintenance, including dry-docking and the application of antifouling 

coatings, which can be both costly and environmentally detrimental due to the release of biocides (Yebra et al., 

2004). 

The Solution: Self-healing polymer coatings offer a promising solution to this challenge (Hillewaere & Du Prez, 

2015). These coatings contain microcapsules or vascular networks filled with healing agents that are released 

upon damage, autonomously repairing cracks, scratches, and other defects (White & Sottos, 2001). Incorporating 

self-healing coatings into the Romanian Navy's ship maintenance protocols can reduce the frequency of 

dry-docking and repainting, leading to substantial cost savings and a diminished environmental footprint 

(Carpentieri & Skelton, 2017). 

Implementation: The Romanian Navy can collaborate with research institutions and industry partners, such as the 

National Institute for Research and Development in Chemistry and Petrochemistry - ICECHIM 

(https://icechim.ro/), to develop and test self-healing coatings specifically tailored to the Black Sea's unique 

environmental conditions. These coatings can be applied to various parts of the ship, including the hull, deck, 

and superstructure, providing comprehensive protection against diverse forms of damage. Regular inspections 

and monitoring, utilizing advanced non-destructive testing techniques (Meyendorf, 2021; Howell, 2020), can 

ensure the effectiveness of the coatings and identify areas that may require additional attention. 

4.2 Corrosion-Resistant Infrastructure for Long-Term Sustainability (Figure 3) 

The Challenge: Naval bases, piers, and other coastal infrastructure are constantly exposed to the corrosive effects 

of saltwater, leading to the degradation of concrete and steel structures (Morris & Vazquez, 2002; (Melchers & Li, 

2009). This necessitates costly repairs and replacements, disrupting naval operations and contributing to 

environmental pollution through the release of construction materials and debris (Tanash & Muthusamy, 2022). 

The Solution: Incorporating corrosion-resistant materials, such as fiber-reinforced polymers (FRP) and concrete 

enhanced with corrosion inhibitors or nanomaterials, can significantly extend the lifespan of naval infrastructure 

(American Concrete Institute, 1984). These materials exhibit superior resistance to saltwater corrosion, reducing 

the need for maintenance and replacement, and minimizing the environmental impact of construction activities 

(Wen & Cao, 2023; Ahmed et al., 2020). 

 

Figure 3. Conceptual Framework - Corrosion-Resistant infrastructure for long-term sustainability 

 

Implementation: The Romanian Navy can adopt a proactive approach by integrating corrosion-resistant materials 

into the design and construction of new naval bases and infrastructure projects. Existing structures can be 

retrofitted with protective coatings or overlays to enhance their durability and longevity ( Romanian Government, 

2018). Regular inspections and targeted maintenance, utilizing non-destructive testing methods, can ensure the 

 

https://icechim.ro/


http://jess.julypress.com Journal of Environmental Science Studies Vol. 7, No. 2, 2024 

23 

 

long-term performance of these materials and prevent costly failures. 

4.3 Sensor Networks for Early Warning and Proactive Adaptation 

The Challenge: The increasing frequency and intensity of extreme weather events in the Black Sea pose a 

significant risk to naval operations and infrastructure (Lionello & Scarascia, 2018b). Early warning systems are 

essential for enabling the Navy to anticipate and respond to these events effectively, minimizing damage and 

ensuring the safety of personnel and assets. 

The Solution: A network of strategically deployed sensors, integrated into buoys, coastal installations, and naval 

vessels, can provide real-time data on meteorological and oceanographic parameters (NOAA, 2023). This data, 

analysed using advanced algorithms and machine learning techniques, can generate accurate forecasts of 

impending storms, floods, and other extreme events, empowering the Navy to make informed decisions 

regarding operational adjustments, asset protection, and personnel safety. 

Implementation: The Romanian Navy can leverage partnerships with national and international meteorological 

agencies, such as the Romanian National Meteorological Administration (ANM) and the European Centre for 

Medium-Range Weather Forecasts (ECMWF), to develop and maintain a robust sensor network. This network 

can be integrated with the Navy's existing communication and data analysis infrastructure to provide timely 

alerts and decision-support tools for naval commanders. 

5. Challenges and Future Directions: Navigating the Complexities of Advanced Functional Materials in 

Green Defence 

While the integration of advanced functional materials offers promising avenues for bolstering the Romanian 

Navy's resilience to climate change, several challenges and considerations must be thoughtfully addressed to 

ensure the successful and sustainable implementation of Green Defence strategies. 

Cost and Scalability: Balancing Innovation and Economic Realities. A primary challenge associated with 

advanced functional materials is their cost. Some of these materials, particularly those requiring complex 

synthesis processes or incorporating rare elements, can be expensive to produce and implement on a large scale. 

The Romanian Navy, operating within budgetary constraints, must conduct rigorous cost-benefit analyses to 

identify the most effective and economically viable solutions (Tian er al., 2023). To mitigate this challenge, 

research and development efforts should focus on developing more cost-effective production methods and 

exploring alternative materials with comparable properties but lower costs (EC, 2020). Additionally, the Navy 

can prioritize the application of advanced functional materials to critical areas where their benefits demonstrably 

outweigh the costs, such as self-healing coatings for high-wear components or corrosion-resistant materials for 

essential infrastructure. 

Environmental Impact: A Life-Cycle Perspective. While advanced functional materials offer significant 

environmental benefits in terms of reduced maintenance, extended lifespan, and improved energy efficiency, 

their production and disposal can pose environmental challenges. Some materials may require energy-intensive 

manufacturing processes or contain hazardous substances that necessitate careful management throughout their 

lifecycle (Henriques et al., 2023). To ensure a holistic approach to sustainability, the Romanian Navy should 

adopt a life-cycle assessment (LCA) framework, evaluating the environmental impact of advanced functional 

materials from raw material extraction to end-of-life disposal \cite{iso-14040}. LCA can inform the selection of 

materials with the lowest overall environmental footprint and guide the development of sustainable disposal and 

recycling practices, aligning with circular economy principles. 

Integration and Standardization: Fostering Collaboration and Interoperability. The successful integration of 

advanced functional materials into naval operations requires a coordinated effort across diverse stakeholders, 

including researchers, engineers, manufacturers, and naval personnel. Standardization of materials, testing 

protocols, and maintenance procedures is essential to ensure consistent performance and interoperability across 

different platforms and systems. The Romanian Navy can establish strategic partnerships with research 

institutions, industry leaders, and international organizations to develop standardized guidelines and best 

practices for using advanced functional materials in naval applications. This collaborative approach can facilitate 

knowledge sharing, technology transfer, and the development of a skilled workforce capable of implementing 

and maintaining these cutting-edge technologies. 

Future Directions. Looking ahead, several key areas warrant further research and development to maximize the 

potential of advanced functional materials for Green Defence, as: 

- Multifunctional Materials: Developing materials that combine multiple functionalities, such as 

self-healing, corrosion resistance, and sensing capabilities, can offer synergistic benefits in terms of 
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performance, efficiency, and sustainability (Mckittrick & Chen, 2013). 

- Bio-Inspired Materials: Drawing inspiration from nature's elegant solutions, researchers can develop 

materials with properties such as self-cleaning, antifouling, and adaptive camouflage, further enhancing 

the resilience and sustainability of naval assets. 

- Smart Materials: Integrating sensors and actuators into materials can enable real-time monitoring and 

adaptive responses to changing environmental conditions, optimizing performance, and minimizing 

resource consumption (West, 1993; Inamuddin et al., 2020). 

6. Conclusion 

Climate change poses an undeniable and escalating threat to global security, with the Romanian Naval Forces 

facing a unique set of challenges in the increasingly volatile Black Sea region. Rising sea levels, intensified 

storms, ocean acidification, and disruptions to marine ecosystems demand a comprehensive and proactive 

response to ensure the Navy's continued operational effectiveness and the protection of Romania's maritime 

interests. 

Green Defence emerges as a strategic imperative, offering a holistic framework for mitigating the impacts of 

climate change while enhancing the Navy's long-term resilience and mission capability. By embracing energy 

efficiency measures, integrating renewable energy sources, and adopting sustainable procurement practices, the 

Romanian Navy can reduce its environmental footprint, improve operational capabilities, and contribute to 

global efforts to combat climate change. 

Integrating advanced functional materials represents a transformative opportunity for the Romanian Navy to 

further its Green Defence goals. Self-healing coatings, corrosion-resistant materials, lightweight composites, and 

sensor-enabled technologies offer innovative solutions to address the specific challenges posed by the Black 

Sea's changing environment. These materials can enhance the durability, longevity, and performance of naval 

assets, reduce maintenance requirements, and improve energy efficiency, ultimately contributing to a more 

sustainable and resilient naval force. 

While the adoption of Green Defence strategies and advanced functional materials presents undeniable 

advantages, it is not without its challenges. Cost considerations, environmental impact assessments, the need for 

standardization, and fostering collaboration across sectors are all critical aspects that must be thoughtfully 

addressed to ensure the long-term viability and effectiveness of these initiatives. 

The Romanian Navy, by investing in research and development, forging strategic partnerships, and embracing a 

holistic approach to Green Defence, can harness the transformative potential of advanced functional materials to 

navigate the complexities of climate change \cite{nato23}. This will not only bolster the Navy's operational 

readiness and resilience but also position Romania as a leader in sustainable maritime practices, contributing to 

regional stability and the global effort to address the intersecting challenges of climate change and security. 
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