Impact of Mining on Forests and Its Biological Diversity at Kirandul Iron Ore Mines, Dantewada, South Bastar, Chhattisgarh: A Case Study

Saroni Biswas¹ & Anirban Biswas²

¹ Development Research Communication and Services Centre, Bosepukur, Kasba, Kolkata, India

² School of Environmental Studies, Jadavpur University, Kolkata, India

Correspondence: Anirban Biswas, School of Environmental Studies, Jadavpur University, Kolkata 700042, India. Tel: 91-973-505-0085.

Received: June 21, 2018	Accepted: July 10, 2018	Online Published: July 17, 2018
doi:10.20849/jess.v1i1.420	URL: https://doi.org/10.20849/jess.v1i1.4	20

Abstract

Mining activities have several impacts on the environment. In our study, emphasis was given to assess biodiversity in one of the leading iron ore mining sites of Bailadila-Kirandul Iron Ore Mines (KIOM) of Dantewada District, South Bastar of Chhattisgarh. Habitat fragmentation, loss and deforestation are highly prevalent in the area. However, the study reveals high species richness of 110 and 253 plant species in core and buffer zone respectively. Canopy cover was found to be within 10 to 40% and in places in the buffer zone canopy cover with > 40% was recorded. Species diversity index indicates the instability of vegetation structure in the area with indices of 1.44 in core and 1.88 in buffer zone. Although species richness is high, about 10 floral species (7 herbs, 3 trees) are recorded under REET (Rare Endangered Extinct Threatened) species while locally endangered floral species are 6 and locally critically endangered are 4. Similarly, 208 faunal species belong to 10 faunal groups was recorded out of which 34 species are listed in different Schedules of Indian Wildlife (Protection) Act, 1972. Therefore, it is an urgent need for planning to undertake appropriate management strategies to conserve biodiversity in the area.

Keywords: biodiversity, species diversity, dominance, canopy statistics, life forms

1. Introduction

Significant and potential risks are found for tropical forests in the world due to mining processes. Globally, over the past 10 years, the mineral production have risen (Kooroshey et al., 2014). A study by Sonter et al., 2017 shows loss of Amazon forest of about 11,670km² area deforestation between the years 2005 to 2015 where 9% of the loss is contributed by mining leases. The area that includes extensive forest resources, in some of which mining-directly and/or indirectly-is thought to have contributed to significant deforestation (Swenson et al., 2011). Similarly, gold mining at Peruvian Amazon also resulted in deforestation (Asner et al., 2013). A sharp increase in mineral prices can result in a surge in mining activity, which contributes to deforestation in some locations. A study by the University of Puerto Rico found that tree cover loss in the Madre de Dios region of Peru has increased significantly since 2007 as a result of artisanal gold mining (Alvarez-Berríos & Aide, 2015). Area of land involved in mining is small but it affects the surrounding area along with its species, and it is very intensive and very destructive (Mather, 1991; Sands, 2005). Mining is a lucrative activity promoting development booms which may attract population growth with consequent deforestation. The deforestation rate due to mining activities in Guyana from 2000 to 2008 increased 2.77 times according to an assessment by the World Wildlife Fund-Guianas (Staff, 2010). Similarly, in the Philippines, mining, along with logging, has been among the forces behind the country's loss of forest cover: from 17 million hectares in 1934 to just three million in 2003 or an 82 per cent decline (Docena, 2010). Nearly 2,000 hectares of tropical forest in the Municipality of Coahuayana in the State of Michoacán (south-western Mexico) will completely be destroyed by mining iron minerals planned by the Italo-Argentine mining company TERNIUM (Anonymous, 2008). Similarly, Nyamagari hills in Orissa India currently threatened by Vedanta Aluminum Corporation's plan to start bauxite mining will destroy 750 hectares of reserved forest (Griffiths & Hirvela, 2008). Massive and unchecked mining of coal, iron ore and bauxite in Jharkhand, India has caused large scale deforestation and created a huge water scarcity (Anonymous, 2011). In return for US\$3.8 billion of investment, the agreements between the State government of Jharkhand, India and mining companies, there will be a massive land acquisition which will deforest no less than 57,000 hectares of forest and displace 9,615 families, many of them located in legally protected Scheduled Areas set aside for indigenous peoples in the State (Mullick & Griffiths, 2007). Moreover, Roads constructed to support the mining operations will open up the area to shifting agriculturists, permanent farmers, ranchers, land speculators and infrastructure developers. For instance the core of Brazil's Amazon development strategy were infra-structure development projects such as roads providing access to frontier regions, mining area and large hydroelectric reservoirs (Mahar, 1988; Fearnside & Barbosa, 1996; Carvalho et al., 2002, 2004).

Therefore, one of the key underlying assumptions about biodiversity management is that native species and ecological processes are most likely to be maintained. To maintain and strengthen the biodiversity management recommendations are primarily aimed at managed forests. The recommendations are designed to promote long term stand level maintenance and recruitment of important structural attributes such as: wildlife, diversity of species, special or unique habitats for floral and faunal wealth, riparian areas and wetlands, coarse woody debris, horizontal and vertical structural diversity.

National Mineral Development Corporation (NMDC) is India's single largest iron ore producer and exporter, presently producing about 30 million tons of iron ore from 3 fully mechanized mines viz., Bailadila Deposit-14/11C, Bailadila Deposit-5, 10/11A both within the state of Chhattisgarh and Kumaraswamy and Donimalai Iron Ore Mines (Karnataka State) which are awarded ISO 9001:2008, ISO 14001:2004 and OHSAS 18001:2007 certification. The iron Ores of Bailadila ranges being the purest in the world is valued highly in the international market. Bailadila range of hills has iron ore reserve of above 1500 million tons of high grade iron ore in 14 deposits.

Dantewada district has rich forest reserves with 64% of its land under forest cover and almost 79% tribal population. Although rich in natural wealth, the district has not seen much development, only 30% of the populations are literate and the district ranks seventh among the 150 backward districts of the country. Therefore the study area is selected to explore further for knowing the impacts of mining on forests. The main objective of the study is understanding various components of the ecosystems in the core as well as buffer zone and to study floral and faunal diversity in the proposed area of mines that aims to achieve the structural as well as functional aspects of it through proper management policies, and adopting scientific approach towards preparing biodiversity conservation and management plan to provide alternate habitat for existing flora and fauna in the ML as well as buffer zone.

2. Method

2.1 Study Area

Bailadila lies in the Survey of India topo-sheet no. 65F/2 within latitude 18°32'32"N and 19°36'5"N and longitude 81°13' and 81°14'30". The study area comes under Kirandul Iron Ore Mine (KIOM) (Figure 1). Total area within Kirandul Mining Project is 1364.115ha under three deposits adjacent to reach other namely (i) Deposit-14 (322.368ha) ML area (ii) Deposit-14 NMZ (506.742ha) ML area and (iii) Deposit-11B (535.005 ha) ML area. The study covers 10km radius around the core area.

Figure 1. Location map of the iron ore deposits (Mining lease area) and buffer zone of 10km radius of study area

2.2 Drainage of Bailadila Range

There are number of perennial streams flowing from the hills and the entire region is a part of Godavari basin. The eastern slopes drain through streams which flow towards northeast to Sankhini river. Drainage in between the eastern and western ridges is through two streams flowing in opposite direction, Galli nala towards south and Sankhini nala cuts across the eastern ridge near Jhirka village flows down east and north east and becomes the Sankini river. This joins with Dankini river near Dantewada and becomes Dantewada river, which ultimately flows through west and joins Indravati river. The western slopes drain through Mari nadi, Berudi nadi and other streams to river Indravti, which joins Godavari river near Bhopalpatnam in the downstream. Southern part of the complex drain through Malinger nadi joining Sabari rivedr and Galli nala joining Talperu river, all again flows to Godavari River.

2.3 Geology

The iron ores of Bailadila range belong to the Bailadila series which are associated with slightly metamorphosed iron-ore bearing sedimentary rocks of Pre-Cambrian age. Iron ore occurs as separate ore bodies on the crest of the two sub-parallel hills running north-south. These hill ranges comprises shales, banded hematite, quartzite and conglomerates containing pebbles of quartzite and shale.

2.4 Sampling Technique

Random samples were taken to assess the ecological structure of the study area and get some simple idea of the ecological functions. The study area is basically a hill running in East-West direction. The whole core area where mining activity is in progress is almost completely denuded and rarely has any species. In some places where species available was recorded as per the findings of transact walk. Random sampling was done with the help of Satellite Imagery and toposheet of the area. Samples were studied both within mining sites (ML area) and in the buffer area i.e., 10 km radius of the ML area of the three mines namely 14ML, 14NMZ and a part of 11ML i.e., 11B. Each site studied is marked with geographical coordinates recorded in GPS handset (GARMIN-12). Studies were done for understanding the phytosociology, inventorisation of faunal species as well as their habitat.

2.5 Floral Study

Quadrat sampling was done in the buffer zone only where there are both forest areas and non-forest areas. At the outset a species area curve was prepared in eastern side of the hill to find out the minimum size of the quadrat required for the study of three layers (considered as separate communities) such as tree, shrub and herb (Cain, 1938). It was inferred that for tree layer the minimum size of the quadrat required for study was $500m^2$ (50m X 10m) for trees, (5m X 5m) $25m^2$ for shrubs and (1m X 1m) $1m^2$ for herbs. In each of the sample sites a quadrat of $500m^2$ was laid to study the tree community (Philip, 1959), Diversity Index, and Canopy Cover. In each of the tree quadrat four shrub quadrats were laid on alternate sides and similarly five herb quadrats were for study of herb layer. Each quadrat was given a code and marked by GPS reading. The sampling sites are as follows (Table 1).

Locations for vegetation study in Deposit-14 (Buffer Zone)				
Sl. No.	Name of site	GPS bearing		
1	Kirandul station	18°38'42.6"N 81°16'0.7"E Alt—625m		
2	Kadampal-Patelpara	18°39'45.5"N 81°18'7.1"E Alt—575m		
3	Kadampal-Patelpara forest	18°39'47"N 81°17'47"E Alt—575m		
4	Kadampal water body	18°39'9.1"N 81°17'41.8"E Alt—583m		
5	Kirandul 4 no. area	18°38′57.6″N 81°16′3.7″E Alt—618m		
6	Kirandul No.1 nala	18°37'42.2"N 8°15'51.7"E Alt—638m		
7	Tailing Dam	18°39'11.8"N 81°17'6.2"E Alt—619m		
8	Water body	18°39'12.4"N 81°17'0.3"E Alt—595m		
9	Water body	18°39'21.1"N 81°17'16.1"E Alt—581m		
10	Behind central workshop	18°42'48.3"N 81°15'56.8"E Alt—534m		
11	Near Bacheli, a stream	18°42′51″N 81°15′32.4″E Alt—541m		

Table 1. Location for vegetation enumeration in the study area

Locations for vegetation study in Deposit-14 (Buffer Zone)				
Sl. No.	Name of site	GPS bearing		
12	Chalkipara	18°41'37.7"N 81°16'20.4"E Alt—546m		
13	Foot hill near tailing pond	18°40'32.4"N 81°14'53.3"E Alt—609m		
14	Middle of the hill	18°40′29.8″N 81°14′52.6″E Alt—622m		
15	Top of the hill	18°40'26.5"N 81°14'50.5"E Alt—642m		
16	Upper embankment of a pond	18°40'33.9"N 81°14'51.3"E Alt—575m		
17	Middle embankment of a pond	18°40'44.6"N 81°14'55.2"E Alt—599m		
18	Lower embankment of a pond	18°40′36.9″N 81°15′0.9″E Alt—595m		
19	Malangir pump house	18°35'30.8"N 81°13'11.1"E Alt—718m		
20	Malangir hill top	18°35'27.8"N 81°13'12.5"E Alt—755m		
21	Malangir hill middle	18°35'29.3"N 81°13'12.7"E Alt—744m		
22	Malangir foothill	18°35'30.4"N 81°13'11.2"E Alt—733m		
23	1km advance to Malangir pump house	18°35'40.5"N 81°13'23.3"E Alt—742m		
24	2km advance to Malangir pump house	18°35'33.6"N 81°13'41.7"E Alt—742m		
25	1.5km advance to Malangir pump house	18°35′27.6″N 81°14′16.9″E Alt—682m		
26	Hiroli Village—near agriculture land	18°35′38.5″N 81°15′23.5″E Alt—682m		
27	Kirnar village	18°36′26.5″N 81°15′48.4″E Alt—674m		
28	Near Ali Dongri	18°37′36.9″N 81°16′57.2″E Alt—611 m		
30	Burdi Dongri	18°37'40.9"N 81°16'56.3"E Alt—620 m		
31	Madari nala	18°37'46"N 81°17'5.3"E Alt—614 m		
32	Patel para	18°37'42.1"N 81°17'39.8"E Alt—642 m		
33	Madadi village	18°37'43.8"N 81°17'58.9"E Alt—622 m		
34	Nayapara	18°37'45.6"N 81°18'01.5"E Alt—623m		
35	Near Garma Dongri	18°37'45.6"N 81°18'01.5"E Alt—623m		
36	Near Perpa Village	18°37'23"N 81°16'45.5"E Alt—623m		
37	Near ESSAR plant	18°37′29.1″N 81°15′51.5″E Alt—619m		
	Locations for vegetation study in Depo	osit—14NMZ (Buffer Zone)		
1	Near Bhannara hill	18°44′9.1″N 81°16′20.8″E Alt—488m		
2	Behind central workshop	18°42'48.3"N 81°15'56.8"E Alt—534m		
3	Near Bacheli, a stream	18°42′51″N 81°15′32.4″E Alt—541m		
4	Chalkipara	18°41'37.7"N 81°16'20.4"E Alt—546m		
5	Pina bacheli	18°41′44.3″N 81°17′54.3″E Alt—532m		
6	Dugeli	18°41′36″N 81°18′41″E Alt—546m		
7	Kirandul No.1 nala	18°37'42.2"N 81°15'51.7"E Alt—638m		
8	Tailing Dam	18°39'11.8"N 81°17' 6.2"E Alt—619m		
9	Water body	18°39'12.4"N 81°17'0.3"E Alt—595m		
10	Water body	18°39′21.1″N 81°17′16.1″E Alt—581m		
11	Near Ali Dongri	18°37′36.9″N 81°16′57.2″E Alt—611 m		
12	Burdi Dongri	18°37′40.9″N 81°16′56.3″E Alt—620 m		
13	Madari nala	18°37′46″N 81°17′5.3″E Alt—614 m		
14	Patel para	18°37′42.1″N 81°17′39.8″E Alt—642 m		

C1 N		
SI. No.	Name of site	GPS bearing
15	Madadi village	18°37′43.8″N 81°17′58.9″E Alt—622
16	Nayapara	18°37′45.6″N 81°18′01.5″E Alt—62
17	Near Garma Dongri	18°37′45.6″N 81°18′01.5″E Alt—62
18	Near Perpa Village	18°37′23″N 81°16′45.5″E Alt—623
19	Near ESSAR plant	18°37′29.1″N 81°15′51.5″E Alt—61
20	Malenger pump house	18°35′30.8″N 81°13′11.1″E Alt—71
21	Malenger hill top	18°35′27.8″N 81°13′12.5″E Alt—75
22	Malenger hill middle	18°35′29.3″N 81°13′12.7″E Alt—74
23	Malenger foothill	18°35′30.4″N 81°13′11.2″E Alt—73
24	1km advance to Malenger pump house	18°35'40.5"N 81°13'23.3"E Alt—74
25	2km advance to Malenger pump house	18°35′33.6″N 81°13′41.7″E Alt—74
26	1.5km advance to Malenger pump house	18°35′27.6″N 81°14′16.9″E Alt—68
27	Hiroli Village—near agriculture land	18°35′38.5″N 81°15′23.5″E Alt—68
28	Kirnar village	18°36′26.5″N 81°15′48.4″E Alt—67
29	Between Bennar hill and Bennar village	18°43′3.7″N 81°17′42.5″E Alt—502
30	Bennar village	18°43′2.5″N 81°17′19.1″E Alt—498
31	Bennar nala	18°43'8.8″N 81°17'7.1″E Alt—487
32	Kirandul 4 no. area	18°38′57.6″N 81°16′3.7″E Alt—618
	Locations for vegetation study in De	eposit-11B (Buffer Zone)
1	Kirandul station	18°38′42.6″N 81°16′0.7″E Alt—625
2	Kadampal—Patelpara	18°39′45.5″N 81°18′7.1″E Alt—575
3	Kadampal—Patelpara forest	18°39′47″N 81°17′47″E Alt—575r
4	Kadampal water body	18°39′9.1″N 81°17′41.8″E Alt—583
5	Hiroli Village—near agriculture land	18°35′38.5″N 81°15′23.5″E Alt—68
6	Near Ali Dongri	18°37′36.9″N 81°16′57.2″E Alt—61
7	Burdi Dongri	18°37′40.9″N 81°16′56.3″E Alt—620
8	Madari nala	18°37′46″N 81°17′5.3″E Alt—614
9	Patel para	18°37′42.1″N 81°17′39.8″E Alt—642
10	Madadi village	18°37′43.8″N 81°17′58.9″E Alt—62
11	Navapara	18°37′45.6″N 81°18′01.5″E Alt—62
12	Near Garma Dongri	18°37′45.6″N 81°18′01.5″E Alt—62
13	Near Perpa Village	18°37′23″N 81°16′45 5″E Alt—623
14	Near FSSAR plant	18°37′29 1″N 81°15′51 5″F Alt—61
15	Kirandul 4 no. Area	18°38′57 6″N 81°16′3 7″F Alt_61
16	Kirandul No 1 nala	18°37'42 2"N 81°15'51 7"F 41+62
17	Tailing Dam	$10^{-7} + 2.2^{-11} + 01^{-13} + 13^{-51} + 14^{-10} + 14^{-10}$
1 /	Water body	10.5711.0 IN 01 17 0.2 E AIt—015 18°20'12 //'NI 81°17'0 2/'E AIt 50
10	Water body	10 37 12.4 10 01 1/0.5 E All 39.
19	Water Dody	10 37 21.1 IN 01 1/ 10.1 E AIL 38
20	Malenger pump house	18°35'30.8" N 81°13'11.1"E Alt—/1
21	Malenger hill top	18-35/27.8"N 81-13/12.5"E Alt—75

Locations for vegetation study in Deposit-14 (Buffer Zone)					
Sl. No.	Name of site	GPS bearing			
22	Malenger hill middle	18°35′29.3″N 81°13′12.7″E Alt—744m			
23	Malenger foothill	18°35'30.4"N 81°13'11.2"E Alt—733m			
24	1km advance to Malenger pump house	18°35'40.5"N 81°13'23.3"E Alt—742m			
25	2km advance to Malenger pump house	18°35'33.6"N 81°13'41.7"E Alt—742m			
26	1.5km advance to Malenger pump house	18°35'27.6"N 81°14'16.9"E Alt—682m			
27	Hiroli Village—near agriculture land	18°35'38.5"N 81°15'23.5"E Alt—682m			
28	Kirnar village	18°36′26.5″N 81°15′48.4″E Alt—674m			
29	Behind central workshop	18°42'48.3"N 81°15'56.8"E Alt—534m			
30	Near Bacheli, a stream	18°42′51″N 81°15′32.4″E Alt—541m			
31	Chalkipara	18°41'37.7"N 81°16'20.4"E Alt—546m			

2.6 Canopy Statistics

A geometric measurement was adopted to estimate Canopy Cover, by directly measuring the crown diameters at right angles, in a specified quadrat. The total canopy cover area (C) in a sample quadrat equals the sum total of the canopy areas of all trees within the quadrat, $\Sigma \pi r_i^2$. Thus, the Canopy Cover Index (CC) is the ratio of C to A, where A = XY (X and Y denoting axes of the quadrat being measured). Open canopy is inferred when CC < 0.4.

2.7 Species Diversity (Alpha Diversity)

Since Shannon and Wiener's H' is an index of information, it was employed to measure diversity of any assemblage (Shannon & Wiener, 1963). The Simpson's Dominance Index (D) was also calculated (Simpson, 1949).

2.8 Life Form Study

The life form composition of the community is the manifestation of the adaptations of its component species to the climatic condition, and contributes to community architecture (Jamir et al., 2006). Life form spectrum is the sum of adaptations of plants to the climate. Following the system of Braun-Blanquet's (1951) system the area possesses five major classes like Phanerophytes, Therophytes, Hydrophytes, Hemicryptophytes and Geophytes.

2.9 Taxonomic Identification of Plant Species

Plant species were identified following standard flora by Hooker (1872-1897), Verma et al. (1985) and Kumar et al., (2005). Names of the plant species were verified using Bennet (1987). The help of scientists of Botanical survey of India (BSI), Kolkata was taken.

2.10 Faunal Study

An ecological survey of the study area for understanding the fauna of the study area was conducted, particularly with reference to listing of species and assessment of the existing baseline ecological conditions in the study area through Direct Count Method; Transect Method; Photographic-survey Based; Dropping/scat; Collection of dissociable body parts and Interviewing Local Villagers.

The study was conducted during post monsoon season in the year 2015-16. The study for fauna was conducted before sunrise to late night (5:30AM to 11:30PM). The adults of Odonata, Lepidoptera and Hymenoptera were collected in the field with aspirator, manually and aerial sweeping nets. The collected insects were preserved by using benzene and kept in insect collection boxes for further examination in the laboratory. Mollusca, Amphibians and Reptiles were collected with the help of forceps manually and Fishes with the help of Aquatic net and all the materials preserved in 70% Alcohol. The random collection and field observation were also made on different groups of the fauna of the study area. The Reptiles, Aves and Mammals were identified by using Binocular (10mm X 25mm) and their presence was recorded by taking photographs. The presence of some Mammals species is also ascertained on the basis of pugmarks, interview with wildlife and forest officials, NMDC staff and villagers residing in study area (Sunquist, 1981; Tamang, 1982; McDougal, 1997; Srestha & Basnet, 2005).

3. Result and Discussion

3.1 Status of Phytodiversity

Bailadila Reserve Forest can prove to be a paradise for both plant and wildlife diversity. The Dantewada district of Chhattisgarh lies on the Gondwana Biodiversity Zone, which mostly comprises of the Tropical Forests. As this area is full of terrains, much of the forest remains unexplored and it is highly probable that this area contains some of the undocumented species. The forest area in the buffer zone comes under Reserve Forest and has following classes as per classification of Forest Survey of India.

- (i) Closed Forest/Very Dense Forest—Where canopy cover is above 70%
- (ii) Dense Forest—Where canopy cover is between 40%-70%
- (iii) Open Forest—Where canopy cover is between 10%-40%
- (iv) Degraded Forest—Where canopy cover is below 10%

The vegetation occurring in the area belongs to Southern tropical dry deciduous forests (Class-5A) which intermingles with Class-5B (Northern tropical dry deciduous type) according to Champion and Seth Classification of forest types of India 1968. According to the classification of Legris and Pascal (1982) the area falls under Deciduous climax forests and this type of forests does not have the potentiality of secondary moist deciduous forests. The most characteristic tree of this type is *Anogeissus latifolia* while *Terminalia tomentosa* is a very typical associate. *Diospyros melanoxylon* is also common. *Boswellia serrata* and *Lagersatroemia parviflora* are very wide spread and conspicuous in this category of forests. Bamboo is generally of poor quality. Grass is conspicuous till it is grazed or burnt in forest fire. Woody climbers are few like *Bauhinia vahlii*. This type of forest, being especially prevalent in the drier localities occurs throughout the study area. But the rain fall being around 3000mm annually it can hardly be classified under dry forest type. Therefore some patches can be classified under Tropical Moist Deciduous Forest with types as $3B/C_1$ and $3B/C_2$. In this type of forests, trees are comparatively tall. It has a leafless period during dry season which may or may not begin with the cold weather.

The boundaries of biogeographic provinces i.e., Eastern Plateau (6B2) and Eastern Highlands (6C2) are not very sharp and they inter-grade into each other. Interestingly the recent physiographic map adopted by the Forest Survey of India also classifies this region into three zones viz., North Deccan, East Deccan and South Deccan by apparently giving more weightage to the political boundary between Maharashtra and Chhattisgarh. The entire area forms the South-Western and Westernmost part of historical Dandakaranya region. This region extends up to North-Eastern Ghats.

The top canopy remains leafless between February-May. The under storey is well defined and the forest floor is full of vegetal growth. Portions of moist deciduous forests were clear felled and converted into plantations of different species such as Teak (*Tectona grandis*), *Eucalyptus sps*, etc. But none of these species being indigenous to this region and planted without any ecological impact study could not successfully establish themselves. In some of the plantation area invasive species like *Lanatana camara* and/or *Eupatorium odoratum* has invaded. The adjacent areas to drainage *nallas* show rich vegetation whereas the hill top shows barren condition with clear signs of laterization. In the hill top soil formation process is poor and simultaneously there is rapid washing out of top soil.

In the hilly areas of Bailadila, availability of iron ore and vegetation change with altitude. According to Mooney (1942a), vegetation at the study area is divided into three zones and has been sub-divided to different associations depending upon various sites in the hill range as,

i. The outer slope of the Hill Range up to an altitude above 914m above sea level—Northern portion of the hill "vegetation is of Hill type with dense bamboo" with evergreen species like Sataparni (*Alstonia scholaris*), Garari (*Cleistanthus collinus*), and *Bauhinia vahlli*. In the southern half of the hill species like Haldu (*Adina cordifolia*), and Mahua (*Madhuca indica*) are available in low quantity. Bijasal (*Pterocarpus marsupium*) with good girth size is found in this side.

ii. The crest of the Hill Range and the adjoining slope—this comes within 914m to 1224m above MSL. This region has high rock content and laterite with low soil content. Trees are stunted, sparse and dense grass (*Physalanona sp*) noticed. Tree species are Saja (*Terminalia alata*), Tendu (*Diospyros melanoxylon*), Awnla (*Emblica officinalis*), Achar (*Buchanania latifolia*), Harra (*Terminalia chebula*), and Sal (*Shorea robusta*), etc. Mooney (1942b) has described this grass dominated region as sub-climax or pro-climax type as a result of shifting cultivation that was in practice even few years back.

iii. The Central valley—the central valley do not come under the study site but is in the buffer area—has species like Saja (*Terminalia alata*), Bijasal (*Pterocarpus marsupium*), Kusum (*Schleichera oleosa*), Semal (*Bombax ceiba*), Kala-Siris (*Albizzia lebbbek*), and Kadamba (*Anthocephalus cadamba*), etc. Bamboo is conspicuously low in this region. Here are few types of forests dominated by species as stated below provided undisturbed: Saja forest, Dhaora (*Anogeisus latifolia*) forest, Garari (*Cleistanthus collinus*) forest, Bhirra (*Chloroxylon swietenia*) forest, Khair (*Acacia catechu*) forest, Jamun (*Syzygium cumini*) forest, Anjan (*Hardwickia binata*) forest, and Mixed Forest with miscellaneous species.

The major floral associations of the forest area of Bailadila are grouped under the following six categories basing on the description of earlier authors and present study of IVI (Table 2).

<i>Acacia catechu</i> (Khair)	The coarse gravelly soil supports the xerophytic growth of Khair. The forests are generally open. Quality of the crop and natural reproduction is generally poor.
Anogeissus latifolia (Dhaora)	The most common constituent of the mixed deciduous forests, often growing more or less gregariously. Avoids swampy and badly drained grounds and requires good drainage. It produces abundant natural regeneration but most of it gets severely damaged and killed in areas with low density due to severe annual forest fires.
Chloroxylon swietenia (Bhirra)	Commonly found in areas where the soil is shallow, arid and sandy.
Cleistanthus collinus (Garai)	Patches of practically pure Garai forest are sometimes seen in the mixed forests in which there are very few associates in the overwood. The reasons for its occurrence in a gregarious form are not quite understood. This sub-type forms an important future reserve for poles and fuel. Density is generally full.
Syzygium cumini (Jumun)	Commonly found in the open forests of Gollapalli, Nilamadugu and Kollaiguda reserves and some of the reserves of Sukma range. It exhibits xerophytic characters and is narrow leaved. Its seedlings die back annually for some years in their early stages.
Terminalia alata (Saja)	It alone thrives in such places where the soil is moist but somewhat heavy owing to the presence of fine clay, where the drainage is hampered and the species are that are susceptible to bad soil aeration disappear.
Hardwickia binata (Anjan)	It is scattered in the southern portion of Gollapalli reserve. This has probably spread from the adjoining area of Andhra Pradesh where it is commonly seen. The areas under this sub-type are not much of any economic importance.

Table 2. Floral association of the study area

3.2 Life Form Status

Life-form refers rather to the vegetative form of the plant body which is assumed by many ecologists to be a result of morphological adjustments to the environment. Those organisms which show the same general morphological features (woody lianas, stem succulents, annuals, tap-rooted perennials with a basal rosette of leaves and the renewal bud at the soil surface, tall broad-leaf deciduous trees, etc.) belong to the same life-form whatever their systematic position in the plant families. It is inherent in the so-called "biological" concept of life-form that there is a fundamental harmony or analogy between the members of such structural groups and the environment in which they prevail. Presence of large percentage of phanerophytes (trees and shrubs) and therophytes (annuals and herbaceous vegetation) indicates semiarid to tropical vegetation structure. The life form status of the study area is given in Figure 2.

Figure 2. Life form in core and buffer zone

3.3 Vegetation within ML Area

The three mines within Kirandul Complex namely Deposit-14, 14 NMZ and a part of 11 (11B) have a very large area given to NMDC for mining as mined lease area and is almost broken. In spite of all out mining activities in all the mining leases as stated above Deposit-14 has 101 floral species within it. This includes 18 tree species, 26 species of shrubs and 57 species of herbs. Mining lease 14 NMZ has 80 floral species within it. This includes 17 tree species, 18 species of shrubs and 44 species of herbs. A part of mining lease 11 (11B) has 93 floral species within it. This includes 21 tree species, 24 species of shrubs and 48 species of herbs. Trees from Fabaceae family include species like *Butea monosperma* and *Cassia fistula*. Within the members of Poaceae *Thysanolaena maxima* is seen very frequently around comparatively stable broken area. There are species like *Parthenium hysterophorus* which are alien and also invasive in nature.

The three core zones in total have 110 species and maximum number of species is observed in ML-14 (Table 3). This is due to the fact that there is a good patch of vegetation within the ML area of Deposit-14 on both sides of Dhobinala. This is a perennial stream and it originates just below the waste dump of the deposit. The other two deposits have less number of species due to lack of any forest patch. The species that are available are mostly in the road sides and slopes where anthropogenic interventions are least.

Sl. No.	Scientific name of the species Family	
Tree		
1	Acacia auriculiformis	Fabaceae
2	Adina cordifolia Rubiaceae	
3	Aegle mermelos Rutaceae	
4	Albizzia procera	Fabaceae
5	Bauhinia acuminate	Fabaceae
6	Boswellia serreta	Burseraceae
7	Buchanania lanzen	Anacardiaceae
8	Butea monosperma	Fabaceae
9	Cassia fistula	Fabaceae
10	Cedrela tonna	Meliaceae
11	Cliestanthus collinus	Euphorbiaceae
12	Dillenia pentagyna	Dilleniaceae
13	Diospyros melanoxylon	Ebnaceae
14	Emblica officinales	Euphorbiaceae
15	Ixora arborea	Rubiaceae
16	Kydia sp.	Malvaceae

Table 3. List of plant species at core area of Kirandul Iron Ore Mine

Sl. No.	Scientific name of the species	Family
Tree		
17	Lagerstromea perviflora	Lythraceae
18	Lannea coromandelica	Anacardiaceae
19	Phoenix sylvestris	Arecaceae
20	Sleichera oliosa	Sapindaceae
21	Soymida febrifuga	Meliaceae
22	Syzizium cumini	Myrtaceae
23	Terminalia belerica	Combretaceae
24	Terminalia tomentosa	Combretaceae
25	Trema orientalis	Urticaceae
Shrub		
1	Asparagus racemosus	Liliaceae
2	Bauhinia vahlii	Fabaceae
3	Caesalpinia bonducella	Caesalpiniaceae
4	Calotropis procera	Asclepiadaceae
5	Capparis spinosa	Capparidaceae
6	Casiarea varacca	Samydaceae
7	Coccinia grandis (= Cephalandra indica)	Cucurbitaceae
8	Cryptolepis buchanani	Apocynaceae
9	Dioscorea bulbifera	Dioscoreaceae
10	Flacourtia ramontchi	Flacourtiaceae
11	Gardenia gummifera	Rubiaceae
12	Gymnema sylvestre	Asclepiadaceae
13	Hemidesmus indicus	Asclepiadaceae
14	Icnocarpus frutescens	Apocynaceae
15	Jatropha gossypifolia	Euphorbiaceae
16	Lantana camara	Verbenaceae
17	Phoenix acualis	Arecaceae
18	Randia uliginosa	Rubiaceae
19	Ricinus communis	Euphorbiaceae
20	Rivea hypocrateriformis	Convolvulaceae
21	Smilax macrophylla	Liliaceae
22	Streblus asper	Moraceae
23	Tephrosia purpurea	Papilionaceae
24	Thespesia lampus	Malvaceae
25	Trema orientales	Urticaceae
26	Vangueria spinosa	Rubiaceae
27	Vitex negundo	Verbenaceae
28	Woodfordia floribunda	Lythraceae
Herb		
1	Aerva lanata	Amaranthaceae

Sl. No.	Scientific name of the species	Family		
Tree				
2	Ageratum conyzoides	Asteraceae		
3	Alternanthera sessilis	Amaranthaceae		
4	Alysicarpus monilifer	Fabaceae		
5	Amaranthus spinosus	Amaranthaceae		
6	Aristida adscenscionis	Poaceae		
7	Asparagus racemosus	Asperagaceae		
8	Atylosia scarabaeoides	Papilionaceae		
9	Bonnaya brachiata	Scrophulariaceae		
10	Botrychium daucifolium	Ophioglossaceae		
11	Cassia occidentalis	Caesalpiniaceae		
12	Cassia tora	Fabaceae		
13	Celosia argentia	Amaranthaceae		
14	Curculigo orchioides	Amaryllidaceae		
15	Cynodon dactylon	Poaceae		
16	Cyperus rotundus	Cyperaceae		
17	Dactyloctenium aegypticum	Poaceae		
18	Desmodium triflorum	Papilionaceae		
19	Digitaria sanguinalis	Poaceae		
20	Dioscorea alata	Dioscoreaceae		
21	Eichhornia crassipes (= E. speciosa)	Pontederiaceae		
22	Elephantopus scaber	Asteraceae		
23	Eragrostis tenella	Poaceae		
24	Eragrostis uniloides	Poaceae		
25	Euphorbia hirta	Euphorbiaceae		
26	Euphorbia microphylla	Euphorbiaceae		
27	Evolvulus alsenoides	Convolvulaceae		
28	Evolvulus nummularius	Convolvulaceae		
29	Fimbristylis japonicum	Cyperaceae		
30	Flemingia chapper	Fabaceae		
31	Gymnema sylvestre	Asclepiadaceae		
32	Habenaria diphylla	Orchidaceae		
33	Hemidesmus indicus	Asclepiadaceae		
34	Indigofera pulchella	Fabaceae		
35	Ionidium suffruticosum	Violaceae		
36	Leea sp.	Leeaceae		
37	Panicum repens L.	Poaceae		
38	Parthenium hysterophorus	Asteraceae		
39	Paspalidium flavidum	Poaceae		
40	Perotis indica (= P. latifolia) Poaceae			
41	Phagmatis karka	Poaceae		
41	r nagmatis karka	Poaceae		

Sl. No.	Scientific name of the species	Family	
Tree			
42	Phyllanthus amarus	Euphorbiaceae	
43	Phyllanthus niruri	Euphorbiaceae	
44	Rivea hypocretaroformis Convolvulaceae		
45	Rungia parviflora	Acanthaceae	
46	Scoparia dulcis	Scrophulariaceae	
47	Setaria glauca	Poaceae	
48	Sida cordifolia	Malvaceae	
49	Solanum zylanicum	Solanaceae	
50	Spermacoce hispida	Rubiaceae	
51	Stephania harnandifolia	Menispermaceae	
52	Thysanolaena maxima	Poaceae	
53	Trichosanthus sp.	Cucurbitaceae	
54	Tridax procumbens Asteraceae		
55	Triumfetta rhomboidea	Tiliaceae	
56	Urena lobata	Malvaceae	
57	Vernonia cinerea	Asteraceae	

3.4 Vegetation in the Buffer Zone

Buffer zone comes within 10km radius of the mine-lease area and it is within Bailadila Reserve Forest and within Dantewada Taluk, Dantewada district of Chhattisgarh. Buffer zone is mostly covered with undulated hilly terrain within 180m-1200m altitude. More than one third of the Buffer zone is within Bailadila RF, Bijapur RF and Palnar PF. But within 10km radius there is no notified Wildlife Sanctuary and National Park. Talperu and Malenger Nadi are passing through the Buffer Zone. There are few nallahs and stream within the buffer area.

The buffer zone has 253 species in total within which 77 are tree species, 72 are shrubs and 81 are herbs. There are also 2 bamboo species, 3 epiphytes, 1 species of insectivorous plant in this ecosystem (Table 4). Number of herb and shrub species is comparatively much less in the buffer zone than the core zone taking the area in to account. The season of study being winter number herbaceous species in general and grasses in particular are ephemerals in these habitat conditions and therefore not possible to identify.

Table 4. List of plant species at build area of Kitandul fion ofe while	Table 4.	List	of plant	species	at buffer	area of	Kirandul	Iron	Ore Mine
---	----------	------	----------	---------	-----------	---------	----------	------	----------

Sl. No.	Scientific name of the species	Family	
Tree			
1	Acacia catechu Fabaceae		
2	Acacia leucophloea	Fabaceae	
3	Adina cordifolia	Rubiaceae	
4	Aegle mermelos	Rutaceae	
5	Alanzium lamarkii	Cornaceae	
6	Albizzia lebbek	Fabaceae	
7	Albizzia odoratissima	Fabaceae	
8	Albizzia procera	Fabaceae	
9	Anogeissus latifolia	Combretaceae	
10	Anthocephalus cadamba	Rubiaceae	

Sl. No.	Scientific name of the species	Family
Tree		
11	Azadirachta indica	Meliaceae
12	Bassia latifolia	Sapotaceae
13	Bauhinia acuminate	Fabaceae
14	Bauhinia malabarica	Fabaceae
15	Boaswellia serrate	Burseraceae
16	Bombax ceiba	Malvaceae
17	Borassus flabellifer	Arecaceae
18	Bridelia retusa	Euphorbiaceae
19	Buchanania lanzen	Anacardiaceae
20	Butea monosperma	Fabaceae
21	Careya arborea	Myrtaceae
22	Carryota urens	Arecaceae
23	Casearia varacca	Samydaceae
24	Cassia fistula	Fabaceae
25	Cedrela toona	Meliaceae
26	Chloroxylon swietenia	Meliaceae
27	Cliestanthus collinus	Euphorbiaceae
28	Cochlospermum religiosum	Bixaceae
29	Dalbergia paniculata	Fabaceae
30	Dalbergia sisoo	Fabaceae
31	Dillenia pentagyna	Dilleniaceae
32	Diospyros melanoxylon	Ebnaceae
33	Emblica officinales	Euphorbiaceae
34	Ficus bengalensis	Moraceae
35	Ficus glomerata	Moraceae
36	Ficus religiosa	Moraceae
37	<i>Flacourtia indica</i>	Flacourtiaceae
38	Gardenia latifolia	Rubiaceae
39	Gardenia turgid	Rubiaceae
40	Garuga pinnata	Burseraceae
41	Gmelina arborea	Verbinaceae
42	Grewia tiliaefolia	Tiliaceae
43	Hardwickia binate	Fabaceae
44	Ixora arborea	Rubiaceae
45	Kydia calvcina	Malvaceae
46	Lagerstromea perviflora	Lvthraceae
47	Lannea coromandelica	Anacardiaceae
48	Mallotus phillipensis	Euphorbiaceae
49	Mitragyna parviflora	Rubiaceae
50	Morinda tinctoria	Rubiaceae

Sl. No.	Scientific name of the species	Family		
Tree				
51	Ougeinia oogeinensis	Fabaceae		
52	Phoenix sylvestris	Arecaceae		
53	Polyalthia cerasoides	Annonaceae		
54	Pongamia pinnata	Fabaceae		
55	Pterocarpus marsupium	Fabaceae		
56	Randia uliginosa	Rubiaceae		
57	Saccopetalum tomentosum	Annonaceae		
58	Schrebera swietenioides	Olieaceae		
59	Semecarpus anacardium	Anacardiaceae		
60	Sleichera oliosa	Sapindaceae		
61	Solanum verbassifolium	Solanaceae		
62	Soymida febrifuga	Meliaceae		
63	Sterculia urens	Sterculaceae		
64	Sterospermum personatum	Bignoniaceae		
65	Sterospermum suaveolens	Bignoniaceae		
66	Strychnos nux-vomica	Loganiaceae		
67	Syzizium cumini	Myrtaceae		
68	Tamarindus indica	Fabaceae		
69	Tectona grandis	Verbinaceae		
70	Terminalia alata	Combretaceae		
71	Terminalia belerica	Combretaceae		
72	Terminalia tomentosa	Combretaceae		
73	Termmalia arjuna	Combretaceae		
74	Trema orientalis	Urticaceae		
75	Wrightia tinctoria	Apocynaceae		
76	Xylia xylocarpa	Fabaceae		
77	Zizyphus mauritiana	Rhamnaceae		
Shrub				
1	Abrus precatorius	Fabaceae		
2	Acacia caesia	Fabaceae		
3	Acacia pennata	Fabaceae		
4	Achyranths aspera	Amaranthaceae		
5	Alangium salvifoloum	Cornaceae		
6	Andrographis paniculata	Acanthaceae		
7	Antidesma diandrum	Euphorbiaceae		
8	Aristolochia indica	Aristolochiaceae		
9	Asparagus racemosus	Liliaceae		
10	Bambusa arundinacea	Poaceae		
11	Bauhinia vahlii	Fabaceae		
12	Butea superba	Fabaceae		

Sl. No.	Scientific name of the species	Family
Tree	· r · · · · ·	5
13	Caesalpinia bonducella	Caesalpiniaceae
14	Calotropis procera	Asclepiadaceae
15	Capparis spinosa	Capparidaceae
16	Carissa spinarum	Apocynaceae
17	Casiarea varacca	Samydaceae
18	Catasibee spinosa	Flacourtiaceae
19	Celastrus paniculata	Celastraceae
20	Clerodendron serratum	Verbinaceae
21	Coccinia grandis (= Cephalandra indica)	Cucurbitaceae
22	Combretum roxburghii	Combretceae
23	Cryptolepis buchanani	Apocynaceae
24	Cucuma aromtica	Zingiberaceae
25	Dendrocalamus strictus	Poaceae
26	Desmodium laxiflorum	Fabaceae
27	Dioscorea bulbifera	Dioscoreaceae
28	Dioscorea floribunda	Dioscoreaceae
29	Dioscoria alata	Dioscoriaceae
30	Dioscoria belophylla	Dioscoriaceae
31	Dioscoria pentaphylla	Dioscoriaceae
32	Embilia robusta	Myrsinaceae
33	Eranthemum pulchellum	Acanthaceae
34	Eulaliopsis binate	Poaceae
35	<i>Flacourtia indica</i>	Flacourtiaceae
36	Flacourtia ramontchi	Flacourtiaceae
37	Gardenia gummifera	Rubiaceae
38	Grewia hirsute	Tiliaceae
39	Gymnema sylvestre	Asclepiadaceae
40	Helisteris isora	Sterculaceae
41	Hemidesmus indicus	Asclepiadaceae
42	Hibiscus ficulneus	Malvaceae
43	Holarrhena antidysenterica	Apocynaceae
44	Icnocarpus frutescens	Apocynaceae
45	Indigofera arborea	Fabaceae
46	Indigofera tinctoria	Fabaceae
47	Jatropha gossypifolia	Euphorbiaceae
48	Lantana camara	Verbenaceae
49	Leea macrophylla	Vitaceae
50	Lygodium japonicum	Schizaeaceae
51	Mahonia semialata	Fabaceae
52	Mukuna puruita	Fabaceae

Sl. No.	Scientific name of the species	Family
Tree		
53	Nyctanthus arbortris-tis	Oleaceae
54	Oxytenanthera nigrocilliat	Poaceae
55	Petalidium barlerioides	Acanthaceae
56	Phoenix acualis	Arecaceae
57	Randia uliginosa	Rubiaceae
58	Ricinus communis	Euphorbiaceae
59	Rivea hypocrateriformis	Convolvulaceae
60	Smilax macrophylla	Liliaceae
61	Stephania harnadifolia	Apocyanceae
62	Streblus asper	Moraceae
63	Swertia angustifolia	Acanthaceae
64	Tephrosia purpurea	Papilionaceae
65	Thespesia lampus	Malvaceae
66	Trema orientales	Urticaceae
67	Vangueria spinosa	Rubiaceae
68	Ventilago denticulate	Rhamnaceae
69	Vitex negundo	Verbinaceae
70	Woodfordia floribunda	Lythraceae
71	Zizyphus oenoplia	Rhamnaceae
72	Zizyphus rugosa	Rhamnaceae
Herb		
1	Aerva lanata	Amaranthaceae
2	Ageratum conyzoides	Asteraceae
3	Alocasia macrorhiza (= A. indica)	Araceae
4	Alternanthera sessilis	Amaranthaceae
5	Alysicarpus monilifer	Fabaceae
6	Amaranthus spinosus	Amaranthaceae
7	Aristida adscenscionis	Poaceae
8	Asparagus racemosus	Asperagaceae
9	Atylosia indica	Papilionaceae
10	Atylosia scarabaeoides	Papilionaceae
11	Barleria prionitis	Acanthaceae
12	Bonnaya brachiate	Scrophulariaceae
13	Botrychium daucifolium	Ophioglossaceae
14	Cassia occidentalis	Caesalpiniaceae
15	Cassia tora	Fabaceae
16	Celosia argentia	Amaranthaceae
17	Crinum asiaticum	Liliaceae
18	Curculigo orchioides	Amaryllidaceae
19	Curcuma amada	Zinziberaceae

Sl. No.	Scientific name of the species	Family
Tree		
20	Curcuma aromatic	Zingiberaceae
21	Cuscuta reflexa	Convolvulaceae
22	Cynodon dactylon	Poaceae
23	Cyperus rotundus	Cyperaceae
24	Dactyloctenium aegypticum	Poaceae
25	Dendrofthoe fulcata	Loranthaceae
26	Desmodium triflorum	Papilionaceae
27	Digitaria sanguinalis	Poaceae
28	Dioscorea alata	Dioscoreaceae
29	Eclipta prostrate	Asteraceae
30	Eichhornia crassipes (= E. speciosa)	Pontederiaceae
31	Elephantopus scaber	Asteraceae
32	Eleusine coarcana	Poaceae
33	Eleusine indica	Poaceae
34	Eragrostis tenella	Poaceae
35	Eragrostis uniloides	Poaceae
36	Eulalipsis binate	Poaceae
37	Euphorbia hirta	Euphorbiaceae
38	Euphorbia microphylla	Euphorbiaceae
39	Evolvulus alsenoides	Convolvulaceae
40	Evolvulus nummularius	Convolvulaceae
41	Fimbristylis japonicum	Cyperaceae
42	Habenaria diphylla	Orchidaceae
43	Hemidesmus indicus	Asclepiadaceae
44	Heteropogon contortus	Poaceae
45	Imperata cylindrical	Poaceae
46	Indigofera pulchella	Fabaceae
47	Ionidium suffruticosum	Violaceae
48	Leea sp.	Leeaceae
49	Lygodium japonicum	Schizaeaceae
50	Mukuna prurita	Fabaceae
51	Ocimum canum	Lamiaceae
52	Panicum milare	Poaceae
53	Panicum repens	Poaceae
54	Parthenium hysterophorus	Asteraceae
55	Paspalidium flavidum	Poaceae
56	Paspalum scrobiculatum	Poaceae
57	Perotis indica (= P. latifolia)	Poaceae
58	Phagmatis karka	Poaceae
59	Phyllanthus amaru	Euphorbiaceae

Sl. No.	Scientific name of the species	Family
Tree		
60	Phyllanthus niruri	Euphorbiaceae
61	Rivea hypocretaroformis	Convolvulaceae
62	Rungia parviflora	Acanthaceae
63	Saccharum spontaneum	Poaceae
64	Scoparia dulcis	Scrophulariaceae
65	Setaria glauca	Poaceae
66	Setaria sp.	Poaceae
67	Sida cordifolia	Malvaceae
68	Sida cordata	Malvaceae
69	Sida rhomboidea	Malvaceae
70	Solanum zylanicum	Solanaceae
71	Spermacoce hispida	Rubiaceae
72	Stephania harnandifolia	Menispermaceae
73	Thysanolaena maxima	Poaceae
74	Trichosanthus sp.	Cucurbitaceae
75	Tridax procumbens	Asteraceae
76	Triumfetta rhomboidea	Tiliaceae
77	Urena lobata	Malvaceae
78	Vernonia cinerea	Asteraceae
79	Vetiveria zizanoides	Poaceae
80	Viscum articulatum	Loranthaceae
81	Zornia diphylla	Papilionaceae
Epiphytes		
1	Cuscuta roxburghii	Convolvulaceae
2	Viscum articulatum	Viscaceae
3	Vanda roxburghii	Loranthaceae
Bamboos		
1	Dendrocalamus strictus	Poaceae
2	Bambusa arundinacea	Poaceae
Insectivorous pla	ant	
1	Drocera burmanii	Droceraceae

The diversity index (Table 5) in the tree level (2.10) is much more in the buffer zone in comparison to core zone (1.44). However, in our study, the species diversity index is lower than compared to other studies done at Eastern Ghats (Sahu et al., 2007; Reddy et al., 2008; Ganguli et al., 2016). Anthropogenic activity within forest area seems to be low in the tree layer as observed from the count of cut off stumps. Canopy cover in most places of the forest area in this zone is within 40-70% which is known to be dense forest as per the FSI classification.

Sl. No.	Indices	Core Zone	Buffer Zone
1	Canopy Cover (%)	0%-10% (40% in one site)	10%-40% and 40%-70%
	Diversity Index		
2	Tree Level	1.44	2.10
2	Shrub level	1.75	2.05
	Herb level	1.13	1.49
	Dominance Index		
3	Tree level	0.36	0.27
3	Shrub level	0.42	0.13
	Herb level	0.52	0.22

Table 5.	Phy	vtosoc	iolo	gical	parameters	of	core	and	buffer	zones	of	Kirandul	com	plex
rable 5.	1 11	y1030C	1010	Bioar	parameters	U1	COLC	unu	ounor	Lones	01	ixinanaan	com	pier

Dominance index in the tree level of the buffer zone is only 0.27 which is much lower to 0.36 in comparison to core zone. This signifies that the tree layer in the buffer zone is shared by many species rather than a few ones which is a tendency towards mixed forest type rather than dominance of few tree species. Dominancy of single species is often attributed to niche diversification, disease, species competition and grazing (Whittaker & Levin, 1977; Harper, 1977). It is also observed that within the buffer zone there are few important species like *Bauhinia* malabarica, Cedrela toona Dalbergia paniculata, Croton oblongifolia, Shorea robusta, and Annona squoamosa which are considered to be prominent forest species of central India. The availability of some of these species is not very frequent in the core zone. Species like Borassus flabellifer, Azadirachta indica, Terminalia tomentosa, Eugenia jambolana, Ficus glomerata, Terminalia arjuna, Diospyros montana, and Mangifera indica share the tree canopy layer in the non-forest area of the buffer zone. Diversity in the tree level in the non-forest areas is further enhanced by the availability of non-forest species like Mangifera indica, and Acacia auriculiformis, etc. Shrub species like Lantana camara and Eupatorium odoratum, Parthenium sp are also available in this region which is considered to be the invasive species in Indian forests as well as non-forest areas. These invasive species are also very frequently available in the core area. Availability of these species in the buffer zone signifies that there is considerable anthropogenic intervention in the ecosystem which has resulted in alteration of species composition of the core as well as buffer zone which is similar to the studies on impact of invasive species on forests (Gordon, 1998; Sanders et al., 2003; Charles & Dukes, 2007; Capers et al., 2009; Devine & Fei, 2011; Priyanka & Joshi, 2013).

There may be less extraction of forest resources form the buffer zone due to its remoteness but long term impact of human habitation and planting of domesticated species and exotic species like teak and *Eucalyptus sp* certainly have a negative impact on the ecosystem. This is why initiative on the part of NMDC in developing positive attitude towards conserving the forest resources in the buffer zone is suggested. Habitat development, therefore, cannot confine within the efforts of plantation, water body creation or soil conservation only. It also will include developing participatory conservation approach taking the villagers of the buffer as well as fringe area in to confidence. There is a clear negative relationship between the diversity and dominance indices in both core and buffer zone. In the buffer zone this relationship is more evident because of its pristine nature.

3.5 Faunal Study

The State of Chhattisgarh falls under the Deccan Bio-geographical Zone (Rodgers et al., 2000). Of its forests, 11% are under the Protected Area Network. During the study period around 208 species belongs to 10 Faunal Groups recorded from the Core and Buffer Areas of Kirandul Complex Iron Ore Mines study sites, in that 18 species recorded belongs to Mollusca; 1 species of Crustacean; 19 species of Odonata; 41 species of Lepidoptera; 3 species of Hymenoptera; 8 species of Fishes; 4 species of Amphibians; 7 species of Reptiles; 92 species of Birds and 15 species of Mammals. Out of total 208 species recorded, 34 species (i.e., 1 species of Lepidoptera, 21 species of Birds and 12 species of Mammals) are listed in different Schedules of Indian Wildlife (Protection) Act, 1972 (Table 6). The locatrion map of different species spotted in the study area is shown in Figure 3.

Sl. No.	Species	Kirandul Complex Iron Ore Mines				
		Deposit 14	Deposit 14NMZ	Deposit 11B	Buffer Area	
(A) Mollu	isca					
1	Bellamya bengalensis form typica	-	-	-	+	
2	Bellamya crassa	-	-	-	+	
3	Bellamya dissimilis	-	-	-	+	
4	Bithynia (Digoniostoma) cerameopoma	-	-	-	+	
5	Bithynia (Digoniostoma) pulchella	-	-	-	+	
6	Melanoides tuberculata	-	-	-	+	
7	Tarebia lineata	-	-	-	+	
8	<i>Lymnaea (Pseudosuccinea) acuminata</i> form <i>typica</i> and form <i>chlamys</i>	-	-	-	+	
9	Lymnaea (Pseudosuccinea) luteola form typica	-	-	-	+	
10	Lamellidens corrianus	-	-	-	+	
11	Lamellidens marginalis	-	-	-	+	
12	Corbicula striatella	-	-	-	+	
13	Cyclophorus (Litostylus) polynema	-	-	-	+	
14	Edouardia orbus	-	-	-	+	
15	Pterocylus rupestris	-	-	-	+	
16	Ariophanta laidlayana	-	+	-	+	
17	Hemiplecta basileus	-	-	-	+	
18	Macrochlamys indica	+	-	-	+	
(B) Crusta	acean (Crab)					
19	Brachytelphusa jaquemontii	-	-	-	+	
(C) Odon	ata (Damsel & Dragonflies)					
20	Ceriagrion coromandelianum	-	-	-	+	
21	Ischnura aurora	-	-	-	+	
22	Pseudagrion rubriceps	-	-	-	+	
23	Ictinogomphus rapax	-	-	-	+	
24	Anax immaculifrons	-	-	-	+	
25	Acisoma panorpoides	-	-	-	+	
26	Brachythemis contaminata	-	-	-	+	
27	Crocothemis servilia	+	-	+	+	
28	Diplacodes trivalis	-	+	-	+	
29	Orthetrum glaucum	-	-	-	+	
30	Orthetrum pruinosum	+	-	-	+	
31	Orthetrum sabina	-	-	+	+	
32	Orthetrum triangulare	-	-	-	+	
33	Palpopleura sexmaculata	-	-	-	+	
34	Pantala flavescens	+	+	+	+	

Table 6. Details of Fauna recorded at Kirandul Iron Ore Mine (Core and Buffer Area)

Sl. No.	Species	Kiran	dul Complex	x Iron Ore M	ines
		Deposit 14	Deposit 14NMZ	Deposit 11B	Buffer Area
35	Tramea virgina	-	-	-	+
36	Trithemis aurora	-	-	-	+
37	Trithemis festiva	-	+	-	+
38	Trithemis pallidinervis	-	-	-	+
(D) Lepidopte	era (Butterflies)				
39	Graphium agamemnon	-	-	-	+
40	Papilio polytes	-	+	-	+
41	Papilio demoleus	-	-	-	+
42	Atrophaneura aristolochiae	-	-	-	+
43	Eurema hecabe	+	+	-	+
44	Catopsilia pomona	-	-	-	+
45	Catopsilia pyranthe	-	+	+	+
46	Colotis danae	-	-	-	+
47	Ixias marianne	+	-	-	+
48	Ixias pyrene	-	-	-	+
49	Pieris brassicae	-	-	-	+
50	Pieris canidia	-	-	-	+
51	Cepora nerissa	-	+	-	+
52	Delias eucharis	+	-	-	+
53	Belenois aurota	-	-	-	+
54	Castalius rosimon	-	-	-	+
55	Catochrysops strabo	-	-	-	+
56	Pseudozizeeria maha	+	+	-	+
57	Tirumala limniace	-	-	-	+
58	Danaus genutia	-	+	-	+
59	Danaus chrysippus	+	+	-	+
60	Euploea core	-	-	-	+
61	Polyura athamas	-	-	-	+
62	Melanitis leda	-	-	-	+
63	Acraea violae	-	-	-	+
64	Argyreus hyperbius	-	-	-	+
65	Phalanta phalantha	-	-	-	+
66	Moduza procris	-	-	-	+
67	Athyma perius	-	-	-	+
68	Euthalia nais	-	-	-	+
69	Tanaecia lepidea	-	-	-	+
70	Cyrestis thyodamas	-	-	-	+
71	Ariadne ariadne	-	-	-	+
72	Junonia orrithiya	-	-	-	+

Sl. No.	Species	Kirandul Complex Iron Ore Mines				
		Deposit 14	Deposit 14NMZ	Deposit 11B	Buffer Area	
73	Junonia hierta	-	-	-	+	
74	Junonia iphita	-	+	+	+	
75	Junonia atlites	-	-	-	+	
76	Junonia almana	-	-	-	+	
77	Junonia lemonias	+	+	+	+	
78	Hypolimnas misippus	-	-	-	+	
79	Kallima inachus	-	-	-	+	
(E) Hymenop	otera (Bees and Wasp)					
80	Apis (Megapis) dorsata dorsata	+	-	-	+	
81	Ropalidia brevita	-	-	-	+	
82	Delta pyriforme pyriforme	-	-	-	+	
(F) Pisces (Fi	ishes)					
83	Channa gachua	-	-	-	+	
84	Danio dangila	-	-	-	+	
85	Danio rerio	-	-	-	+	
86	Garra mullya	-	-	-	+	
87	Pethia conchonius	-	-	-	+	
88	Puntius amphibius	-	-	-	+	
89	Rasbora daniconius	-	-	-	+	
90	Schistura dayi	-	-	-	+	
(G) Amphibia	ans (Toad and Frogs)					
91	Duttaphrynus melanostictus	-	-	-	+	
92	Euphlyctis cyanophlyctis	-	-	-	+	
93	Fejervarya syhadrensis	-	-	-	+	
94	Fejervarya orissaensis	-	-	-	+	
(H) Reptiles	(Lizards, Skinks and Snakes)					
95	Calotes versicolor	+	+	+	+	
96	Psammophilus dorsalis	+	-	+	+	
97	Hemidactylus brooki	-	-	-	+	
98	Lygosoma punctata	-	-	-	+	
99	Mabuya macularia	-	-	-	+	
100	Echis carinatus	-	-	-	+	
101	Lycodon aulicus	+	-	+	+	
(I) Aves (Bird	ds)					
102	Gallus gallus	-	-	-	+	
103	Pavo cristatus	-	-	-	+	
104	Hemicircus canente	-	-	-	+	
105	Dendrocopos nanus	-	-	-	+	
106	Dendrocopos canicapillus	-	-	-	+	

Sl. No.	Species	Kirandul Complex Iron Ore Mines					
		Deposit 14	Deposit 14NMZ	Deposit 11B	Buffer Area		
107	Dinopium benghalense	-	+	-	+		
108	Megalaima lineata	-	-	-	+		
109	Megalaima asiatica	-	-	-	+		
110	Megalaima haemacephala	-	-	-	+		
111	Coracius benghalensis	+	+	+	+		
112	Halcyon smyrensis	-	-	-	+		
113	Nyctyornis athertoni	-	-	-	+		
114	Merops orientalis	-	+	+	+		
115	Merops leschenaulti	-	-	-	+		
116	Hierococcyx varius	-	-	-	+		
117	Phaenicophaeus tristis	-	-	-	+		
118	Centropus sinensis	+	-	-	+		
119	Psittacula cyanocephala	-	-	-	+		
120	Cypsiurus balasiensis	-	+	-	+		
121	Columba livia	-	+	+	+		
122	Streptopelia chinensis	+	-	-	+		
123	Actitis hypoleucos	-	-	-	+		
124	Vanellus malabaricus	-	-	-	+		
125	Vanellus cinereus	-	+	-	+		
126	Vanellus indicus	-	-		+		
127	Milvus migrans	-	-	-	+		
128	Spilornis cheela	-	-	-	+		
129	Accipiter badius	-	-	-	+		
130	Spizaetus cirrhatus	-	-	-	+		
131	Falco tinnunculus	+	+	-	+		
132	Phalacrocorax niger	-	-	-	+		
133	Egretta garzetta	-	-	-	+		
134	Mesophoyx intermedia	-	-	-	+		
135	Bubulcus ibis	-	+	+	+		
136	Ardeola grayii	-	-	-	+		
137	Pseudibis papillosa	-	-	-	+		
138	Pitta brachyura	+	+	-	+		
139	<i>Chloropsis cochinchinensis</i>	-	-	-	+		
140	Lanius cristatus	-	-	-	+		
141	Lanius schach tricolor	-	-	-	+		
142	Dendrocitta vagabunda	-	-	-	+		
143	Corvus splendens	+	+	-	+		
144	Oriolus tenuirostris	-	-	-	+		
145	Oriolus xanthornus	-	-	-	+		

Sl. No.	Species	Kirandul Complex Iron Ore Mines				
		Deposit 14	Deposit 14NMZ	Deposit 11B	Buffer Area	
146	Coracina melaschistos	-	-	-	+	
147	Pericrocotus divaricatus	-	-	-	+	
148	Pericrocotus erythropygius	-	-	-	+	
149	Pericrocotus flammeus	+	-	-	+	
150	Rhipidura aureola	-	-	-	+	
151	Dicrurus macrocercus	-	-	-	+	
152	Dicrurus caerulescens	-	-	-	+	
153	Dicrurus aeneus	-	+	-	+	
154	Dicrurus paradiseus	-	-	-	+	
155	Hypothymis azurea	-	-	-	+	
156	Aegithina tiphia	-	-	-	+	
157	Monticola solitarius	-	-	-	+	
158	Monticola cinclorhynchus	+	-	-	+	
159	Zoothera citrina cyanotus	-	-	-	+	
160	Zoothera dauma	-	-	-	+	
161	Eumyias thalassina	-	-	-	+	
162	Cyornis poliogenys	-	-	-	+	
163	Copsychus saularis	-	-	-	+	
164	Saxicoloides fulicata	+	-	-	+	
165	Phoenicurus ochruros	-	-	-	+	
166	Sturnus contra	-	-	-	+	
167	Acridotheres tristis	-	-	-	+	
168	Sitta castanea	-	+	-	+	
169	Sitta frontalis	-	-	-	+	
170	Parus xanthogenys	-	-	-	+	
171	Hirundo rustica	+	-	-	+	
172	Pycnonotus melanicterus	-	-	-	+	
173	Pycnonotus jocosus	-	-	-	+	
174	Pycnonotus cafer	-	-	-	+	
175	Prinia socialis	-	-	-	+	
176	Zosterops					
	palpebrosus	-	-	-	+	
177	Orthotomus sutorius	-	-	-	+	
178	Phylloscopus colybita	-	+	-	+	
179	Phylloscopus trochiloides	-	-	-	+	
180	Pomatorhinus horsfieldii	-	-	-	+	
181	Pellorneum ruficeps	-	-	-	+	
182	Chrysomma sinense	+	-	-	+	
183	Turdoides striatus	_	-	-	+	

Sl. No.	Species	Kirandul Complex Iron Ore Mines				
		Deposit 14	Deposit 14NMZ	Deposit 11B	Buffer Area	
184	Turdoides affinis	-	-	-	+	
185	Dicaeum erythrorynchos	-	-	-	+	
186	Nectarinia asiatica	-	-	-	+	
187	Passer domesticus	+	+	+	+	
188	Motacilla flava	-	-	-	+	
189	Motacilla cinerea	-	-	-	+	
190	Anthus rufulus	-	+	-	+	
191	Anthus campestris	-	-	-	+	
192	Lonchura striata	-	-	-	+	
193	Lonchura punctulata	+	-	-	+	
(J) Mammals						
194	Macaca mulatta	+	+	+	+	
195	Semnopithecus entellus	+	+	+	+	
196	Muntiacus muntjak	-	-	-	+	
197	Sus scrofa	-	-	-	+	
198	Melursus ursinus	+	+	+	+	
199	Canis aureus	-	+	-	+	
200	Vulpes bengalensis	-	-	-	+	
201	*Panthera tigris	-	-	-	+	
202	Panthera pardus	-	-	-	+	
203	Harpestes edwardsii	+	+	+	+	
204	Lepus nigricollis	-	+	+	+	
205	Hystrix indica	+	-	-	+	
206	Ratufa indica	+	+	-	+	
207	Funambulus pennantii	+	+	+	+	
208	Pteropus giganteus	-	-	-	+	

Discription: Where (+) indicates Presence and (-) indicates Absence of the species in the study area.

Figure 3. Map showing different faunal species found at different locations of the study area

3.6 Major Threats to Biodiversity

Large scale loss of biodiversity has been mainly caused by anthropogenic activities like habitat loss, degradation, fragmentation, biotic interference, grazing, demand for timber, fuel wood, pollution and introduction of exotic species, etc. Due to large scale mining during last few decades in Bailadila forest area the above mentioned causes has aggravated by few folds. Some of these factors are discussed below in brief.

3.6.1 Habitat Loss, Degradation and Fragmentation

Habitat loss, degradation, and fragmentation are important causes of known species population extinctions. The main cause of degradation and depletion of forests and wildlife are the human activity (anthropogenic pressure). Deforestation has led to reduction of rainfall, silting of rivers and dams, increase soil erosion, dryness in the air and increase in temperature, adversely affecting not only forestry but also agriculture and associated activities.

3.6.2 Biotic Interference

The collection of Non-timber Forest Produce (NTFP) in the form of small timber, fuel wood, and fodder by the people living in the surrounding villages in the project area and areas between the village and Reserved Forests are thereby exerting intensive biotic pressures on these resources. There is likelihood of increase in biotic interference with the influx of labour population during the construction of the project. This floating human population will exert serious pressure on the semi-natural ecosystems around the activity sites. Plantation of exotic species and invasion of non-native species like *Lantana camara, Parthenium sp* and *Eupatorium odoratum* are also forms of biotic interference in this region.

3.6.3 Timber Requirement

The demand for timber and other wood produce is very high in the state for various activities like the construction of houses, business centers and other development activities owing to rapid population growth.

3.6.4 Non Timber Forest Products (NTFP)

Non Wood Forest Products (NWFP) constitute important source of livelihood for the poor and especially landless. There is abundance of Tendu leaves (*Diospyrus melanoxylon*), Mahua flowers (*Madhuca indica*), Sal leaves and seeds (*Shorea robusta*), different medicinal plants like Harra (*Terminalia achebula*), Bahera (*Terminalia bellerica*), Awnla (*Emblica officinalis*), wild fruit yielding species like Jamun (*Syzygium cumini*),

Aam (Mangifera indica), etc. in the forest patches which are most of the times are over extracted.

3.6.5 Grazing Pressure

Various livestock species reared in the study area include cattle, buffaloes and goats. The grazing pressure leads to interference of livestock in the wilderness areas, direct competition for forage availability and degraded quality and reduction in the food availability for herbivores, transmission of communicable diseases and reduction in area of wilderness needed for the wildlife to sustain.

3.6.6 Poaching

It is one of the major causes for destruction of wildlife which is still in a practice by local dwellers in the study area. During the survey, list of Rare Endangered Extinct and Threatened (REET) species were recorded (Table 7).

Table 7.	List of F	REET s	pecies	of pla	ants in	the	study	area

REET plants within studied areas	Locally Endangered	Locally Critically	
	species e	ndangered and vulnerable	
Herb: Drocera burmanii (18°39'26.2"N 81°17'46.7"E Alt—581m), Equisetum sp (18°43'42.1"N 81°15'35.2"E Alt—517m), Plumbago zeylanica (18°39'45.5"N 81°18'7.1"E Alt—580m.), Cyathea arborea syn Polypodium arboreum (Indian Tree fern) (18°35'40.5"N 81°13'23.3"E Alt—742m), Musa sp (Wild banana) (18°35'30.8"N 81°13'11.1"E Alt—718m), Uticularia sp (18°39'9.1"N 81°17'41.8"E Alt—583m)	Butea monosperma, Clerodendron serratum, Curculigo orchioides, Curcuma aromatic Gymnema sylvestre, Pterocarpus marsupium	Celastrus paniculata, Bassia latifolia, Madhuca indica, Terminalia arjuna (Low risk)	
Tree: <i>Mallotus philippensis</i> (18°36'38.4"N 81°18'52.6"E Alt—675m), <i>Acacia concinna</i> (Sikakai) (18°35'29.3"N 81°13'12.7"E Alt—744m), <i>Strychnos potatorum</i> (18°37'23.3"N 81°16'44.7"E Alt—626m)			

4. Conclusion

This case study demonstrates the major impact of mining on flora and fauna of Kirandul Iron Ore Mine. The study entails the total destruction of forest areas within the core zone. A detailed floral account only provides supportive evidence to ensure the survival of the herbivores and the carnivores, once the adjacent habitat can offer ecological niche for maintaining a prey predator base. The undulating mountain forest is expected to have the distribution of the recorded species over a wider area.

It is evident from the study that there are few plant species of rare occurrence in the buffer zone of Kirandul complex and few animal species within Schedule-I of Indian Wildlife (Protection) Act, 1972. These species are likely to be affected by mining project and related construction and other related activities like road construction, blasting, excavation for mining, and dumping of excavated material. However, human population pressure on land and biological resources are likely to exert pressure on the biological resources of the region. The existing natural ecosystems in areas constituting a rich bio-diverse region that need protection and further strengthening of conservation efforts.

Implementing scientific forest management may be helpful in some participatory forest management contexts, but it requires users to participate in an unfamiliar knowledge culture and appropriate support mechanisms need to be in place, particularly if scaling up its use across a country.

Acknowledgement

The authors are thankful to staffs of Indian Institute of Biosocial Research and Development, Kolkata for helping during extensive field work. Forest Department of South Bastar, Dantewada, Chhhattisgarh is acknowledged for their assistance during field survey.

References

Alvarez-Berríos, N. L., & Aide, T. M. (2015). Global demand for gold is another threat for tropical forests. *Environmental Research Letters*, 10(1), 1-11. https://doi.org/10.1088/1748-9326/10/1/014006

Anonymous. (2008, November). *Mexico: Mining causes ecocide in Coahuayana, Michoacan.* WRM's bulletin N.

Anonymous. (2011, March 5). Mining, deforestation cause severe drought. The Asian Age, New Delhi.

- Asner, G. P., Llactayo, W., Tupayachi, R., & Luna, E. R. (2013). Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. *Proceedings of the National Academy of Sciences*, 110(46), 54-59. https://doi.org/10.1073/pnas.1318271110
- Bennet, S. S. R. (1987). Name changes of flowering plants of India and adjacent region. Dehradun: Triseas Publishers.
- Braun-Blanquet, J. (1964). Plant Associations, Principles of vegetation. Springer Verlag, Wien, 865.
- Cain, S. A. (1938). The species-area curve. The American Midland Naturalist, 19(3), 573-581. https://doi.org/10.2307/2420468
- Carvalho, G., Moutinho, P., Nepstad, D., Mattos, L., & Santilli, M. (2004). An Amazon perspective on the forest-climate connection: opportunity for climate mitigation, conservation and development? *Environment, Development and Sustainability, 6*, 163-174. https://doi.org/10.1023/B:ENVI.0000003635.86980.c0
- Carvalho, G., Nepstad, D., McGrath, D., Carmen, D., Vera Diaz, M., Suntilli, M., & Barros, A. C. (2002). Frontier expansion in the Amazon: balancing development and sustainability. *Environment, 44*, 34-42. https://doi.org/10.1080/00139150209605606
- Champion, H. G., & Seth, S. K. (1968). A revised Survey of the forest types of India. New Delhi: Government of India Publications.
- Charles, H., & Dukes, S. (2007). Impacts of Invasive Species on Ecosystem Services. In W. Nentwig (Ed.), *Ecological Studies* (Vol. 193). Biological Invasions. https://doi.org/10.1007/978-3-540-36920-2 13
- Devine, K., & Fei, S. (2011). A review of impacts by invasive exotic plants on forest ecosystem services. Proceedings of the 17th Central Hardwood Forest Conference GTR-NRS-P-78.
- Docena, H. (2010, December). Philippines: Deforestation through mining subsidized by CDM project. WRM's bulletin N 161.
- Fearnside, P., & Barbosa, R. (1996). The Cotingo dam as a test of Brazil's system for evaluating proposed developments in Amazonia. *Environmental Management*, 20, 631-648. https://doi.org/10.1007/BF01204136
- Ganguli, S., Gupta Joshi, H., & Bhattacharya, K. (2016). Vegetation structure and species diversity in Garh jungle sacred forest, West Bengal, India. *International Journal of Environmental and Agriculture Research*, 2(9), 72-79.
- Gordon, D. R. (1998). Effects of invasive, non-indigenous plant species on ecosystem processes: lessons from Florida. *Ecological Applications*, 8(4), 975-989. https://doi.org/10.1890/1051-0761(1998)008[0975:EOINIP]2.0.CO;2
- Griffiths, T., & Hirvelä, V. V. (2008, January). India: Illegal aluminum refinery in Tribal lands in Orissa. *WRM's bulletin N 126*.
- Harper, J. L. (1977). Population Biology of Plants. New York: Academic Press.
- Hooker, J. D. (1872-1897). Flora of British India, London (Reprinted Edition 1973.
- Jamir, S. A., Upadhaya, K., & Pandey, H. N. (2006). Life form composition and stratification of montane humid forests in Meghalaya, northeast India. *Tropical Ecology*, 47(2), 183-190.
- Kooroshy, J., Preston, F., & Bradley, S. (2014). Cartels and Competition in Minerals Markets: Challenges for Global Governance. *Chatham House research paper*, 1-59.
- Kumar, A., Khanna, K. K., & Jha, A. K. (2005). Floristic Diversity of Chhattisgarh (Angiosperms). In *Bishen Singh and Mahendra Pal Singh, Dehradun* (p. 545). New Delhi: Oxford & IBH Publishing Co. Pvt.Ltd.
- Legris, & Pascal (1982). Explanatory booklet on the map of South India. French Institute Pondicherry.
- Mahar, D. (1988). Government policies and Deforestation in Brazil's Amazon region. Washington DC: World Bank.
- Mather, A. S. (1991). Global Forest Resources. International Book Distributors. Dehra Dun, 311.
- McDougal, C. (1997). *Tiger Survey Report*. A Report Submitted to Department of National Parks and Wildlife Conservation. Kathmandu, Nepal.
- Mooney, H. F. (1942a). Sketch of the Flora of Bailadila Range in Bastar State, 3(7).

Mooney, H. F. (1942b). Forest Advisor, and Eastern States Agency was published in as Indian Forest Record.

- Mullick, B., & Griffiths, T. (2007, March). India: Indigenous movement in Jharkhand challenge plans for industrial development that threatens to destroy Adivasi forests, farmlands and way of life. *WRM's bulletin N116*.
- Philip, E. A. (1959). Methods of Vegetation study. Henry Holt & Co. Inc.
- Priyanka, N., & Joshi, P. K. (2013). A review of Lantana camara studies in India. *International Journal of Scientific and Research Publications*, 3(10), 1-11.
- Reddy, C., Babar, S., Giriraj, A., Reddy, K. N., & Rao, T. (2008). Structure and Floristic Composition of Tree Diversity in Tropical Dry Deciduous Forest of Eastern Ghats, Southern Andhra Pradesh, India. Asian Journal of Scientific Research, 1, 57-64. https://doi.org/10.3923/ajsr.2008.57.64
- Rodgers, W. A., Panwar, H. S., & Mathur, V. B. (2000). *Wildlife Protected Area Network in India: A review*. WildlifeInstitute of India.
- Sahu, S. C., Dhal, N. K., Sudhakar Reddy, C., Pattanaik, C., & Brahman, M. (2007). Phytosociological Study of Tropical Dry Deciduous Forest of Boudh District, Orissa, India. *Research Journal of Forestry*, 1(2), 66-72. https://doi.org/10.3923/rjf.2007.66.72
- Sanders, N. J., Gotelli, N. J., Heller, N. E., & Gordon, D. M. (2003). Community disassembly by an invasive species. *Proceedings of the National Academy of Sciences*, 100(5), 2474-7. https://doi.org/10.1073/pnas.0437913100
- Sands, R. (2005). Forestry in a Global Context. CABI Publishing. https://doi.org/10.1079/9780851990897.0001
- Shannon, C. E., & Wiener, W. (1963). *The Mathematical Theory of Communication*. Urbana, IL: University Illinois Press.
- Shrestha, B., & Basnet, K. (2005). Indirect methods of identifying mammals: A case study from Shivapuri National Park, Nepal. *Ecoprint*, 12, 43-58.
- Simpson, E. H. (1949). Measurement of Diversity. Nature, 163, 688. https://doi.org/10.1038/163688a0
- Singh, M. P. Dehradun. Journal of Polymer Materials. New Delhi: Oxford & IBH Publishing Co. Pvt.Ltd.
- Sonter, L. J., Herrera, D., Barrett, D. J., Galford, G. L., Moran, C. J., & Soares-Filho, B. S. (2017). Mining drives extensive deforestation in the Brazilian Amazon. *Nature Communications*, 8, 1013. https://doi.org/10.1038/s41467-017-00557-w
- Srnquist, M. E. (1981). The Social Organization of Tiger in Royal Chitwan National Park Nepal. *Smithsonian Contribution to Zoology, 336*, 14-98.
- Staff, S. (2010, October 13). Mining deforestation nearly tripled between 2000-08 (Archives).
- Swenson, J. J., Carter, C. E., Domec, J. C., & Delgado, C. I. (2011). Gold Mining in the Peruvian Amazon: Global Prices, Deforestation, and Mercury Imports. *PLoS ONE*, 6(4), e18875. https://doi.org/10.1371/journal.pone.0018875
- Tamang, K. M. (1982). The status of the tiger (Panthera tigris) and its impact on principle prey population in the Royal Chitwan National Park, Nepal (doctoral thesis). Michigan, USA: Michigan State University East Langsing.
- Verma, D. M., Pant, P. C., & Hanfi, M. I. (1985). Flora of raipur, Durg and Rajnandgaon. Botanical Survey of India, Howrah.
- Whittaker, R. H., & Levin, S. A. (1977). The role of mosaic phenomena in mosaic communities. *Theoretical Population Biology*, 12, 117-139. https://doi.org/10.1016/0040-5809(77)90039-9

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).